
Robert Kosara

Semantic Depth of Field –
Using Blur for Focus+Context Visualization

(PhD Thesis)

http://www.asgaard.tuwien.ac.at/˜rkosara/
http://www.kosara.net/research/sdof/

mailto:rkosara@asgaard.tuwien.ac.at or mailto:rkosara@acm.org



Abstract

One central task in information visualization and related fields (like volume and flow visu-
alization) is displaying information in a context that makes it easier for users to understand.

Blur is a visual cue that has been playing an important role in photography for over 150
years, but has been widely ignored in computer graphics. Sharp objects in photographs
immediately attract the viewer’s gaze – distinguishing between sharp and blurred objects
therefore is very well suited for directing the viewer’s attention to certain objects or parts of
the image.

In this thesis, a method called Semantic Depth of Field (SDOF) is proposed, which blurs
currently irrelevant objects and thus guides the viewer’s attention. This method only re-
quires one additional value for each data point: its relevance. This relevance is then trans-
lated into a blur level, which is used for drawing objects. The user has full control over the
functions involved in this process. A number of applications is shown to demonstrate the
usefulness of SDOF.

Because blur is known to be slow, a method for fast blurring of objects is also presented,
which makes it possible to use SDOF in interactive applications.

The results of a user study are also presented, which showed that SDOF is a preattentive
feature, i.e., can be perceived within 200 ms, and does not require serial search. SDOF is
also not significantly slower than color when used in search tasks; and it does not decrease
performance when combined with another feature, as is usually the case.

Zusammenfassung

Ein zentrales Thema in der Informationsvisualisierung, wie auch in anderen Bereichen (etwa
Volumens- und Strömungsvisualisierung), ist die Darstellung von Information in einem
Kontext, der die Daten leichter erfassbar macht.

Unschärfe ist eine visuelle Eigenschaft, die in der Fotografie seit über 150 Jahren eine
wichtige Rolle spielt, dies in der Computergrafik aber so gut wie gar nicht tut. Scharfe
Objekte oder Bereiche in einem Foto erregen aber sofort die Aufmerksamkeit des Betracht-
ers/der Betrachterin – der Unterschied zwischen scharfen und unscharfen Objekten eignet
sich daher ausgezeichnet, die Aufmerksamkeit auf bestimmte Dinge zu lenken.

In dieser Arbeit wird eine Methode namens Semantic Depth of Field (SDOF) vorgeschla-
gen, die durch Unschärfe weniger wichtige Objekte weniger sichtbar macht, und damit die
Aufmerksamkeit des Benutzers lenkt. Diese Methode benötigt nur eine zusätzliche Infor-
mation pro Datenpunkt: dessen Relevanz. Diese wird in eine Unschärfe übersetzt, die dann
zum Zeichnen von Objekten benutzt wird. Der/die BenuterIn hat volle Kontrolle über die
Funktionen, die in dieser Übersetzung verwendet werden. Eine Reihe von Applikationen,
die SDOF einsetzen, wird besprochen um dessen Nutzen zu demonstrieren.

Weil Unschärfe in der Computergrafik als langsam bekannt ist, wird eine Technik vorge-
stellt, die es möglich macht, SDOF in interaktiven Applikationen einzusetzen.

Außerdem wird von den Ergebnissen einer Studie berichtet, in der gezeigt werden kon-
nte, dass SDOF ein präattentives Merkmal ist, also innerhalb von 200 ms und ohne serielle
Suche wahrgenommen wird. SDOF ist auch nich signifikant langsamer als Farbe in Suchauf-
gaben, und es verlängert die Suchzeit nicht signifikant, wenn nach der Kombination von
SDOF und einem anderen Merkmal gesucht wird – wie das sonst der Fall ist.

i



Contents

Abstract, Kurzfassung i

1 Introduction 1
1.1 Conventions and Legal Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work in Visualization 4
2.1 Focus+Context Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Distortion Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 The Macroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Magic Lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 GeoSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Classification of F+C Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Spatial Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Dimensional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Cue Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Cone Trees and Cam Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Hyperbolic Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Treemaps, Space Filling Trees . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Uses of Blur in Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Preattentive Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Related Work in Photography 14
3.1 Camera Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 The Pinhole Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 The Thin Lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Other Camera Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Depth-of-Field in Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Uses of DOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Advanced Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Aperture Shape and Bokeh . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Semantic Depth of Field 23
4.1 Spatial Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



4.4 Viewing and Camera Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.1 2D SDOF and the Photo-realistic Camera . . . . . . . . . . . . . . . . . 27
4.4.2 3D SDOF and the Adaptive Camera . . . . . . . . . . . . . . . . . . . . 29

4.5 Properties and Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.2 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.1 Output Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.2 User Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Usage Types and UI Metaphors . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7.1 2D SDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7.2 Layered 2D SDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7.3 3D SDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Implementation 36
5.1 Depth-of-Field Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Distribution Ray Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Linear Postfiltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.3 Ray Distribution Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.4 Accumulation Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.5 Splatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.6 21

2
D Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.7 Light Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.8 Importance Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.9 Comparison of Methods and Discussion . . . . . . . . . . . . . . . . . 40

5.2 Fast Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Polygonal SDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 FastSDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Applications 47
6.1 LesSDOF: Text Display and Keyword Search . . . . . . . . . . . . . . . . . . . 47

6.1.1 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 SDOF Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 sfsv: SDOF-Enhanced File System Viewer . . . . . . . . . . . . . . . . . . . . . 49
6.2.1 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.2 SDOF Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Sscatter: SDOF-Enhanced Scatterplot . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.1 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3.2 SDOF Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 SDOF-Enhanced AsbruView: sav . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.1 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4.2 SDOF Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Chess Boards: sPGNViewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5.1 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iii



6.5.2 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.5.3 SDOF Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 sMapViewer: Layered Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6.1 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.6.2 Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.6.3 SDOF Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7 Evaluation 55
7.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2 Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Test Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3.3 Test Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.3.4 Block 1: Preattentive Detection and Location . . . . . . . . . . . . . . . 57
7.3.5 Block 2: Preattentive Count Estimation . . . . . . . . . . . . . . . . . . 58
7.3.6 Block 3: Interplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.3.7 Block 4: Relations of Blur Levels . . . . . . . . . . . . . . . . . . . . . . 61
7.3.8 Block 5: LesSDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3.9 Block 6: Sscatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3.10 Block 7: sMapViewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.11 Block Q: Qualitative Questions . . . . . . . . . . . . . . . . . . . . . . . 66

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4.1 Block 1: Preattentive Detection and Location . . . . . . . . . . . . . . . 69
7.4.2 Block 2: Preattentive Count Estimation . . . . . . . . . . . . . . . . . . 69
7.4.3 Block 3: Interplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.4.4 Block 4: Relations and Blur Levels . . . . . . . . . . . . . . . . . . . . . 72
7.4.5 Block 5: LesSDOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4.6 Block 6: Sscatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4.7 Block 7: sMapViewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.4.8 Block Q: Qualitative Questions . . . . . . . . . . . . . . . . . . . . . . . 75

7.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Summary and Future Plans 78

9 Conclusions 80

Bibliography 81

Acronyms, Abbreviations, Variables 86

Acknowledgements 87

Curriculum Vitae 88

iv



Chapter 1

Introduction

Why should we be interested in visualization? Because the human visual system is
a pattern seeker of enormous power and subtlety. The eye and the visual cortex of the
brain form a massively parallel processor that provides the highest-bandwidth channel
into human cognitive centers.

— Colin Ware [60]

Information visualization produces images from abstract data. Its goal is to make efficient
use of our visual system to convey information and to provide the user with the means to
gain insight into data. For this purpose, data not only has to be displayed effectively, but it
must also be possible to explore and to analyze it, and eventually to present the results of
this process to others.

When large amounts of data have to be displayed, it becomes difficult to show all objects
with enough detail on the available amount of screen space. Focus+context techniques make
it possible to display more data by different means. Most of these methods are user-driven,
i.e., the user has to select which parts of the display are shown in more detail. There are
several ways to do this: by distorting the screen geometry in different ways, by showing
different information for the items the user focuses on, etc. – these techniques are discussed
in Chapter 2.

But when exploring and ana lysing data, the user often wants to query the data for objects
with certain properties; and when presenting results, the user wants to stress certain features
of the data, or guide the audience’s attention to a particular feature. For this purpose, data-
driven methods are needed, that point out the results of queries to the user. Different visual
cues can be used to do this – color, saturation, etc. –, which have different effects on the
display, and are more or less effective. These cues also must allow for very fine-grained
control of the display of objects – which is not the case with distortion-oriented methods,
for example: they often enlarge objects which are close to relevant ones, but are not relevant
themselves (because relevance does not have to coincide with the physical layout of the
information).

The idea proposed in this thesis is to blur objects that are of little relevance, and to display
relevant objects sharply, thus making them stand out. This method, called Semantic Depth
of Field (SDOF), was inspired by the depth of field (DOF) effect known from photography.
In contrast to DOF, SDOF blurs objects based on their relevance, not their distance from the
lens.

1



Photography and cinematography deal with tasks that are very similar to the ones de-
scribed above. In an image, the photographer wants to make clear what the subject is, and
in what context that subject is put. The viewer (usually) does not have to search for the main
parts of a photograph, but is guided through it. This is done with different means, one of
which is depth of field (Chapter 3). A lens does not depict all objects equally sharp, but
creates blurred depictions for those that are outside the focus plane. A viewer’s attention is
immediately drawn to the sharp parts of an image – this has been known in photography
for about 150 years.

SDOF requires an additional piece of information from the data that is to be visualized:
its relevance. Each object or data point is assigned a number from 0 to 1, where 0 means
a totally irrelevant object, and 1 stands for a maximally relevant one. How this is done is
very specific to the application, and relevance can be used in very different ways: data can
be queried by the user and the results shown, objects can be pointed out in a tutorial-like
application, and relevance can be used to navigate between layers of information.

Relevance is then translated into a blur level by means of a function that the user can
control. It is thus possible to get an overview of the structure of the data by changing blur
function properties, or to define a different query by changing the relevance function.

The model behind SDOF, including parameterization and applicability is described in
Chapter 4.

A number of applications were developed in the course of this research. Among them
is a text viewer which allows the user to search for a keyword, and points out not only the
found word, but also the sentence it appears in, by displaying that sentence sharply, and the
rest of the text blurred. Other examples include a scatter-plot program which allows the user
to differentiate groups of objects through blur; a file system viewer, that can point out files
with certain properties through blur; and a chess board that can show different connections
between chessmen through selective focus. These applications are described in detail in
Chapter 6.

The SDOF model allows the use of existing rendering mechanisms for generating im-
ages, but these are generally too slow for interactive applications. A method was therefore
developed that can very efficiently blur objects using hardware features present in current
low-cost consumer graphics cards, such as texture mapping. This method is described in
Chapter 5.

Because of its use in photography, blur promises to be quite effective and intuitive. But
it is not necessary to rely on anecdotal evidence: Perceptual psychology investigates the
properties and mechanisms of our visual system (among others), and provides means to
measure the effectiveness and efficiency of a method. One important property of a visual
feature is preattentiveness. Preattentive features are recognized within a very short time
(approximately 200 ms) after the exposure to the stimulus, and do not require serial search.
They therefore provide a very efficient means of conveying information to the user.

A user study was performed to find out if SDOF was a preattentive feature. We tested 16
participants for different aspects of preattentivity, such as being able to detect and locate a
sharp object, or to estimate the percentage of sharp objects among blurred ones. The results
clearly showed that SDOF is, in fact, a preattentive feature, and that it can be perceived
very quickly. It also turned out that SDOF is not significantly slower than color, and that the
combination of blur with orientation does not make perception slower (which a combination
usually does). The user study is described in detail and its results are discussed in Chapter 7.

2



Conventions and Legal Stuff / 1.1

1.1 Conventions and Legal Stuff

Throughout this thesis, the author will generously refer to himself as “we”. This is meant
to make reading easier, and to make the thesis sound less presumptuous (because this work
was not done strictly on my own without any help from others – but I got help from my
supervisors and colleagues).

In this thesis, trademarks, registered names, etc. are not marked as such – it is not my obli-
gation as a scientist to do trademark research. All photographs (except those in Figure 3.10
on page 22) and other images (except those in Chapter 2) in this thesis are copyrighted by
the author, and may not be used without explicit permission in any way. The photographs
in Figure 3.10 are copyrighted by Dr. Heinrich Tauscher, and are used with his kind per-
mission. All statistical diagrams in Chapter 7 are copyrighted by the Center for Usability
Research and Engineering (CURE). The results of the user study presented in Chapter 7 are
copyrighted by VRVis Research Center and the Institute of Software Technology and Inter-
active Systems of the Vienna University of Technology. All methods used in this study are
copyrighted by the Center for Usability Research and Engineering (CURE) in Vienna.

3



Chapter 2

Related Work in Visualization

Whenever large amounts of data are to be investigated, visualization potentially becomes
a useful solution to provide insight into user data. Especially for exploration and analysis
(but also for presentation) of very large data-sets, visualization not only needs to provide
an easy-to-read visual metaphor, but also should enable the user to efficiently navigate the
display, allowing for flexible investigation of arbitrary details.

Focus+Context (F+C) techniques enable the user to investigate specific details of the data
while at the same time also providing an overview over the embedding of the data under
investigation within the entire dataset. But F+C encompasses a number of very different
techniques that achieve similar goals in very different ways.

This chapter presents an overview of existing F+C techniques (Section 2.1), as well as a
classification of them (Section 2.2). Ways of presenting tree-structured data in a useful way
are described in Section 2.3. We also list some existing uses of blur in visualization (Sec-
tion 2.4) and present a short introduction to perceptual psychology, especially preattentive
processing (Section 2.5).

2.1 Focus+Context Techniques

An important factor in visualization is not only to visualize information, but also to provide
a context in which the information is put. This is especially important in information visu-
alization, where there are no (or hardly any) natural mappings of data dimensions to spatial
dimensions, or to visualization properties.

Once the user has built a mental map [44] of the data, the mappings should only be
changed if there is no other way of displaying the requested information. A change of the
mapping means that the user must build a new map, which takes time and effort.

But not only in information visualization, but also in other areas, F+C is important and
is gaining interest. It is useful, for example, to be able to see the outline of the skin when
looking at a volume rendering of the bones and blood vessels in a human hand [16].

An important concept in this regard is the degree of interest (DOI) function [11]: it defines
which parts are how important to the user right now. This function can be very different
depending on the method and the user settings, and can also change during a visualization
session.

The function as it is defined by Furnas [11] relies very much on the spatial layout of the
information. Its a posteriori component is a simple distance metric of objects from the current

4



Focus+Context Techniques / 2.1

Figure 2.1: An illustration of distortion techniques (Leung and Apperley [32])

point of focus (the a priori component deals with structural information that is contained in
the data anyway, like directory levels). While this is a useful metaphor for user interaction
in a purely distortion-oriented display, it also imposes restrictions on the complexity of the
DOI function. Most importantly, it does not allow for a data-driven approach (Section 2.2),
where the data is queried and the results pointed out to the user.

2.1.1 Distortion Techniques

The richest and most important class of methods providing F+C are distortion techniques
[32]. They mostly work on 2D visualizations, magnifying important parts while compressing
less important ones (Figure 2.1). This leads to the screen space being partitioned according
to importance, not according to space used by the different objects.

Space-Scale Diagrams [12] are a way of explicitly modeling the different scales that are
available in a distorted display, as well as how they can be combined and navigated. The
concept of geometric distortion has also been extended to 3D [6], where objects are scaled
due to their importance, pushing other (smaller) objects aside. The use of this method does
however make use of size as a visual variable impossible, which is not necessarily the case
in 2D (2D distortions are easier recognized as such).

Fisheye Views

Fisheye Views [11, 52, 53] are a focus+context metaphor that is also based on a concept from
photography. A fisheye lens is an ultra-wideangle lens that has a field of view close to or
even above 180Æ, and that has not been corrected for barrel distortion (i.e., straight lines off-
center appear to be bent). In addition to the perspective effects that depict nearer objects
larger, a fisheye lens also has an uneven distribution of magnification over the lens, so that
objects at the same distance appear larger if they are in the middle, and smaller if nearer to
the edge of the lens.

5



Focus+Context Techniques / 2.1

Figure 2.2: An illustration of the perspective wall (by Leung and Apperley [32])

A fisheye view distorts the image in such a way that the region of interest (no matter
where on the screen it is) is magnified much more than the other parts of the screen.

Perspective Wall

Distortion techniques are meant to enhance a visualization, especially navigation. This re-
quires them to be fast, so that the user can easily move between parts of the visualization of
different magnification levels. One technique that is especially easy to implement on hard-
ware is the Perspective Wall [39]. The visualization is mapped onto a “wall” that consists of
three segments: A middle segment that is parallel to the screen and nearest to the viewer,
and two segments on either of its sides that are folded back slightly, so that they are dis-
torted by perspective. Because of simple perspective effects, the middle segment appears
larger, so that it shows the current focus, while the side segments show the context in less
magnification the further away it is from the current focus (Figure 2.2).

A similar idea is the document lens [49], which provides context not only on two, but four
sides. A big advantage of this technique is not only that it is fast, but that it also provides
a center that is completely undistorted (in contrast to fisheye views, for example), which in
this case is necessary for being able to read the text.

Seamless Multi-Level Views

Most distortion techniques only change the size of objects depending on their importance.
Multi-Level Views [24] distort the image, but they also include a semantic level, in that they
can show different images at different levels of magnification. Thus, a semantic zoom can be
integrated by showing images at different levels that differ not only in their magnification,
but also in the amount of details that are drawn at all, or that are shown as icons in lower

6



Focus+Context Techniques / 2.1

Figure 2.3: A hyperbolic tree (Lamping et al. [30])

magnifications and as photographs (as in the example of landmarks) in higher magnifica-
tions.

The different levels are smoothly blended into each other, which can also be accelerated
by hardware if done using MIP-mapping. Fog is used as an additional visual cue to enhance
depth perception.

Hyperbolic Space

Hyperbolic space [29, 30, 45] is similar to a projection of a hemisphere onto the Euclidean
plane (Figure 2.3). The center of the hyperbolic plane is closest to the Euclidean plane, and
is least curved. It therefore presents an almost undistorted image. The farther away from
the center something is, the smaller it is due to the steeper angle of the “projecting” area –
similar to fisheye views. Other than with fisheye views, the projection is constant, but the
objects are moved around on the visible area, and are magnified depending on their location.

Stretchable Rubber Sheets

A similar idea are stretchable rubber sheets [54], which allow more general distortions and
provide a slightly different metaphor. The user can have several focal points, and the DOI
function can be different than with fisheye views or hyperbolic trees.

2.1.2 The Macroscope

The Macroscope [34] does not distort the image, but rather puts several layers of images at
different zoom levels over each other. The “lowest” level (or background) of the image is the

7



Focus+Context Techniques / 2.1

Figure 2.4: A magic lens showing text fonts (Stone et al. [58]).

whole information space (e.g., a map), which serves as the context. A handle (like a rectan-
gle) is displayed on this background to show the part that is magnified. This magnified area
is drawn translucently, so that it covers the whole screen (or window), but the background
(context) can still be seen. Objects in the magnified view are drawn cruder (i.e., with larger
“pixels”), which makes the levels easier to discriminate.

But because of the hard contrasts, the levels in this method are hard to distinguish. It is
also rather counter-intuitive to have the more detailed information displayed in a translucent
layer (and with larger pixels), when there is a solid background. Therefore, blur is used in
the more recent version of the method [35], as mentioned in Section 2.4. Another problem is
that details and context from completely different parts of the visualization will be projected
onto the same location without any information about whether or not this means that they
are in any way related.

2.1.3 Magic Lenses

The Magic Lens [4, 58] displays more detail or different information in a small window with-
out changing the magnification level. The metaphor used here is that of a lens that is moved
over a map, for example (which is quite interesting, because only one example in the cited
paper shows a different magnification inside the lens, all other examples show purely se-
mantic differences). This reduces clutter, and can be used to display additional information,
that would be impossible to show all the time (many different types of information at many
points).

With magic lenses, the user has to actively move the focus over the visualization, and
is not shown the most relevant data automatically. This is useful for exploration, but for
analysis and presentation of data, a more data-driven (rather than user-driven) approach
would be useful.

2.1.4 GeoSpace

GeoSpace is a Geographical Information System (GIS) that makes it possible to display crime
data, certain cities, or hospitals [38]. This data is displayed in the same context as the whole
map, but the relevant parts of the display have a higher color saturation and opacity than

8



Classification of F+C Methods / 2.2

the rest. This leads the viewer’s attention to the relevant objects easily without removing
context information.

2.2 Classification of F+C Methods

This section presents a classification of the F+C methods discussed above. Usually, only
distortion-oriented (or, as we call them, spatial) methods are treated as different from the
rest. We believe, however, that there are three different classes in F+C visualization that
deserve differentiated treatment.

2.2.1 Spatial Methods

The most prominent group of F+C methods are distortion-oriented [32] or spatial methods. This
class encompasses all the techniques listed in Section 2.1.1, like fisheye views, the perspective
wall, stretchable rubber sheets, and seamless multi-level views.

Distortion-oriented techniques are usually used in an explicit way, by actively bringing
the interesting objects into focus, e.g. by clicking on objects or dragging them around. These
methods do not allow for very fine-grained control, because objects that are close to im-
portant ones are often enlarged even though they may not be relevant at all. They work
best when they are used to reinforce the already existing spatial layout, but not to try out a
completely different view on the data.

2.2.2 Dimensional Methods

For smaller numbers of objects that have a lot of data associated with them, a visualization
method is useful that shows just a limited number of data dimensions, and allows the user
to select which of the objects are to be shown in more detail – we call these dimensional
methods. The context in this case are not only the other objects, but also the remaining data
dimensions. This type of method also shows more detail, but in terms of data dimensions,
not screen size.

Dimensional methods are also user-driven, because the user has to move the focus to see
the additional dimensions. They do allow for fine-grained control, because magic lenses can
take on any shape. But they are not very suitable for pointing out information, because they
require user interaction to discover the information.

2.2.3 Cue Methods

The third type of focus+context techniques allows the user to select objects in terms of their
features, not their spatial relations; usually by assigning a certain visual cue to them – we
therefore call these methods cue methods. They make it possible to query the data for in-
formation which is not immediately visible in the initial visualization, while keeping the
original layout, and thus not destroying the user’s mental map [44].

Examples for this type of technique are GeoSpace (as discussed above) and the geograph-
ical visualization presented in Section 2.4, which uses blur.

In contrast to distortion-oriented techniques and magic lenses, with this type of method,
the user first selects the criteria, and then is shown all the objects fulfilling them. So these

9



Trees / 2.3

methods are data-driven rather than user-driven, and therefore make it possible for the pro-
gram to point out information, and guide the user. They also allow very fine-grained control
over which objects are pointed out, because they generally do not have (strong side-effects).

According to this classification, SDOF is a cue method.

2.3 Trees

Trees contain a natural hierarchy, much more than many other data structures. They are
therefore especially well-suited for being used for F+C. Navigation in a tree can also be
hard, which also makes a good visualization important.

2.3.1 Cone Trees and Cam Trees

Cone Trees [50] display trees in 3D, with the children of each node layed out along the base
of a cone, the apex of which is the parent node. The root node is placed at the very top,
and the size of cones is determined so that the tree best fits the available “room” (which is
delimited by screen space). The cones are translucent, so that they structure the data, but do
not obstruct the view on nodes that are farther away from the viewer. The tree casts shadows
onto “walls” and the “floor” of the display, thus also showing projections of its structure.

When a node is selected, it is moved to the front by simultaneously rotating all tree levels,
following a shortest rotational path. This animation is important, because it would otherwise
be very hard to understand how the different tree levels came to be moved to the new state.

The labels of nodes are displayed on small “cards” in the cone tree. This can be problem-
atic when the labels are too long: changing the label size or aspect so that the text fits would
obstruct parts of the tree in the background. So for this case, the entire tree is drawn from
left to right instead of top to bottom. The labels of this tree (which is called a cam tree) can
extend farther in the horizontal direction.

One problem of cone/cam trees is that they are very inefficient in their use of screen
space.

2.3.2 Hyperbolic Trees

A hyperbolic tree [30] is laid out not in Euclidean space, but in a geometry where the fifth Eu-
clidean axiom — that any line has only one parallel that passes through a given point (which
does not lie on the first line) — does not hold. If that geometry is projected to 2D Euclidean
space (e.g., a computer screen), the appearance is similar to an image taken by a fisheye: the
whole space is projected into a circle, with objects near the edge taking up exponentially less
space (another paper [21] contains a nice introduction to hyperbolic geometry).

Hyperbolic trees are first drawn with their root in the middle of the circle, and the child
nodes spread out all around the root. The different branches get different amounts of space,
depending on the number of children they have on different levels (Figure 2.3 on page 7).
The focus is changed by moving the nodes in Euclidean space. This does not influence their
layout, so this step does not have to be repeated. But the different location on the projected
circle yields a different magnification of the node.

10



Uses of Blur in Visualization / 2.4

Figure 2.5: Information pyramid (Andrews et al [2])

2.3.3 Treemaps, Space Filling Trees

While cone trees are quite inefficient in their usage of screen space, tree maps [57] fill the
entire space with a representation of the tree to depict. The space is partitioned in one direc-
tion, which is turned 90 degrees for every tree level. The partition sizes are proportional to
the sizes of the subtrees (which are of course simply the sum of their children, so the leaves
have to provide some kind of size information; in the example of a file system, this could be
the file size).

This method is very space-efficient, but is hard to read, especially for trees that are deeply
nested. A notion of recursion levels can be present, but is equally hard to understand for a
“deep” tree. Very small objects are hard to see at all, and are certainly hard to label. There-
fore, in the sample implementation, labels pop up if the mouse is moved over an area, so
that the text does not clutter the image.

A similar method are information pyramids [2], which show the tree levels as stacked
pyramid frustrums (Figure 2.5). That view can be navigated by “flying” over the pyramid,
and “cropping” it to a certain height, in order to limit the displayed detail.

2.4 Uses of Blur in Visualization

There have been surprisingly few attempts to use DOF or blur in visualization at all; the
ones relevant to this work are shortly summarized here.

In a system for the display of time-dependent cardio-vascular data [63], a stereoscopic
3D display is included that is controlled by the viewer’s eyes. Like a microscope, only one
thin slice through the data appears sharp, all others are blurred and therefore almost invisi-
ble. Eye tracking equipment determines what the user is looking at, and that point is brought
into focus. This makes it possible to concentrate on one detail without the surrounding struc-
tures confusing the viewer. Later work [64] describes “non-linear depth cues”, which means
displaying structures that currently are of interest (like single organs) in focus, and other

11



Preattentive Processing / 2.5

objects out of focus, not based on their distance from the camera, but on their importance.
This amounts to a semantic use of depth of field.

The Macroscope [35] is a system for displaying several zoom levels of information in the
same display space. For this purpose, the images on all levels are drawn over each other,
with the more detailed ones drawn “in front”, i.e., drawn over the less magnified layers.
The layers’ transparency can be changed so that the background (context) can be more or
less visible. In order to make the background less distracting, blur is used for the front-most
images that show the whole image.

The most interesting existing approach for this work is a display of geographic informa-
tion [7]. In this system, up to 26 layers of information can be displayed at the same time.
Each layer has an interest level associated with it that the user can change. The interest level
is a combination of blur and transparency, making less interesting layers more blurred and
more transparent at the same time. This work does not seem to have been followed up on
recently.

Also interesting in comparison to this work is GeoSpace (Section 2.1.4), which uses a
different cue to guide the viewer and present context.

F+C technique, which is a system for visualizing geographical data [38] that uses color
saturation to show different types of data for the same geographical area. Different cities,
hospitals, pharmacies, etc. can be viewed by “lightening them up” with brighter and more
saturated colors than other parts of the image. Here also preattentive processing is exploited
for the purpose of fast perception.

A system that is not a visualization system at all, but that is quite interesting, is the
Restricted Focus Viewer (RFV) [5]. The RFV is a software solution for eye-tracking in psy-
chological trials, which tends (or at least tended) to be expensive and inaccurate. The partici-
pant in the study sees a blurred image, and can move a focus around in which the unblurred
image is shown (all movements of the focus are logged of course, and can be precisely repro-
duced). The blur serves two purposes here: It makes it necessary for the participant to move
the focus to the parts of the image he or she wants to look at, and it avoids distractions from
other parts of the image.

All the described approaches only used blur in a very limited way. None of them pre-
sented a thorough model or linked their work to perceptual psychology, nor showed the vast
field of applicability of SDOF.

2.5 Preattentive Processing

Visualization is so effective and useful because it utilizes one of the channels to our brain
that have the most bandwidth: our eyes. But even this channel can be used more or less
efficiently. It is therefore very important that we know about the different properties of
visual cues, and processing of visual information in the brain [13].

The visual system can perform certain tasks without the person having to focus their
attention on the objects involved, and in a very short time (typically below 200 ms). This is
called preattentive processing, examples for it include detecting filled objects among outlines
(Figure 2.6 on the following page, hue differences, orientation, and motion [59].

It is desirable to use preattentive features simply because they are the ones that are per-
ceived fastest, thus optimizing the human-computer interface. Preattentive features also
require less concentration and effort, and so are the logical choice for the most important

12



Preattentive Processing / 2.5

Figure 2.6: An example of the preattentive feature color. The filled circle immediately stands
out on the left side, and so does the compound object on the right. The fact that two groups
of objects (left and right) are seen at all is due to proximity being another preattentive feature.

data to convey over a visualization. This is also an important factor in animations, where
one wants the viewer to be able to easily follow what is going on. Preattentively perceived
objects and constellations “pop out” by themselves.

A kind of visualization hierarchy is needed that assigns more important information to
preattentive visual features, and less important ones to others. Visualizations for multivari-
ate data have already been developed based on preattentive processing [17, 18, 19].

SDOF is a preattentive method, which is shown in Chapter 7. But even without that
proof, it is easy to imagine why this would be the case: depth of field is an intrinsic property
of the human eye. Our eyes are not very similar to a camera in many respects, but they are
similar at least insofar as both use a lens and an aperture to project an image to a receptive
surface (which is where the differences start ...). The eye does not have unlimited depth of
field, but we hardly perceive that. Objects that are blurred (because they are too far away
from the focus plane or because they are in the peripheral parts of the field of view, where
resolution decreases) are either “invisible” (i.e., not perceived as important, at least as long
as they do not move) or simply “interpolated”, so that we do not perceive the change in
sharpness. The effectiveness of DOF in photography also strongly suggests that depth of
field is, in fact, preattentively perceived.

Perceptual psychology seems to be getting more popular with researchers in visualiza-
tion at the moment [19, 21, 60].

13



Chapter 3

Related Work in Photography

One important difference between photography and drawing is depth of field [42]. It is
a natural phenomenon that can be found in any lens system, and even with real pinhole
cameras.

SDOF is based on this effect, that is quite well known from photography and cinematog-
raphy. The basics for this effect as well as its uses in practice are described in this chapter: In
Section 3.1, different camera models are discussed; and Section 3.2 describes the use of DOF
in photography.

3.1 Camera Models

Camera Models are the basis for all depictions that are calculated by a computer rather than
taken with a real camera. A camera model describes the way light rays (or, more common,
“sight rays”) find their way from the object to the film (or – in the case of sight rays – from
the film to the object).

3.1.1 The Pinhole Camera

The traditional camera model in computer graphics is the pinhole camera (Figure 3.2, left).
In this model, the film is contained in a light-tight box that has an infinitesimally small hole
on one side. Through this hole, light rays can fall in and cause an image to be formed.
Because the hole is infinitesimally small, any point on the film can only be hit by a light ray
from exactly one direction. This causes a perfectly sharp image with infinite depth of field –
at least in theory. A real pinhole camera has a finite hole diameter which causes objects that
are extremely close to lose some detail. This effect is hardly noticeable, however.

Pinhole cameras are not just a model but really exist and are used (Figure 3.1 on the
next page shows an example). They do show hardly any depth-of-field effects, but due
to the finite size of a real hole (and also the fact that hole size and exposure time have to
be balanced somehow), sharpness is not very good. This limits the actual use of pinhole
cameras to artistic purposes and experiments.

14



Camera Models / 3.1

Figure 3.1: A pinhole image taken in Amsterdam. Everything from the rain drops few cen-
timeters from the pinhole to houses hundreds of meters away is equally sharp.

3.1.2 The Thin Lens

A real camera uses a much more complicated (and expensive) thing to form the image than
a hole: a lens system1 (Figure 3.2, right). A lens system normally contains a number of
simple lenses, together with the aperture (also called the stop) and possibly the shutter and
auto-focus mechanics, etc. forming a very complex device.

The geometric camera model (which, more accurately, is called the thin lens model [23,
31]) is described in this section. It consists of a single, infinitesimally thin, simple lens that
projects the image onto the film plane (Figure 3.3) – in this model, the curved surface and
the physical width of the lens do not play a role. The distances between object and lens, and
between lens and image satisfy the following equation, which is called the lens law [31]:

1

u
+

1

v
=

1

f
(3.1)

In this formula, u is the distance from the (infinitely thin) lens to the object, and v is the
distance from the lens to the image. A lens focuses all rays that are parallel to its axis to a
point that is at a certain distance from its center (Figure 3.4 on page 17). This is called the
focal length, represented by the letter f .

1In English, both the simple glass lens (i.e., a single body of glass that refracts light) and the lens system (the
object that is mounted to a camera, usually containing several glass lenses) are called “lens”. Therefore, the term
“simple lens” will be used here to refer to the former meaning, and “lens system” to refer to the latter, if the
meaning is not clear from the context.

15



Camera Models / 3.1

FilmObject

Pinhole

Film

Lens

Aperture

Figure 3.2: Pinhole camera (left) and camera with lens system (right). The rays in the right
part are only schematically drawn, and not modeled after their real phyical properties.

u v

lens axis

Figure 3.3: The thin lens model, with the object in focus.

If the film plane is not at distance v from the lens, the image gets blurred. In such a case,
a point of the object is not projected to a point in the image, but rather to a circle, the so-
called circle of confusion (CoC). The diameter of this circle, C , can be calculated using similar
triangles (Figure 3.5 on page 18):

C = D
v

v � v0
(3.2)

D is the diameter of the lens. In practice, one never uses the lens diameter, but the f-stop
(or aperture setting) a (also called k in the literature), which defines the ratio between focal
length and effective lens diameter: a = f

D
. Closing the aperture by one stop (“stopping

down”) makes the lens diameter smaller, causing a more acute angled triangle that also
leads to a smaller increase of CoC diameter with distance from the focus plane — and thus,
an image with more depth of field.

Any point whose CoC diameter is smaller than a certain maximum (which depends on
viewing parameters, see Section 3.2.4) is perceived as in focus. It is possible to calculate a
distance that, if the lens is focused at it, will project points at infinity at exactly the maximum

16



Camera Models / 3.1

f

lens axis

Figure 3.4: Illustration of the focal length f

possible CoC radius, Cmax. This is called the hyperfocal distance H , which can be calculated
using this formula [23]:

H =
f
2

Cmaxk
(3.3)

This is an interesting number, not only because it is useful for landscape photography
(where one usually wants maximum depth of field), but also because the near and far planes
unear and ufar that delimit the area that appears sharp in the image, can be easily expressed
by it. If the lens is focused at u = H

x
, then [23]

unear =
H

x+ 1
; ufar =

H

x� 1

3.1.3 Other Camera Models

Complex lens models can be based on physics [31], or on geometry [25] (like the thick lens
model), physical models that use geometry, or even vector field analysis, etc. For many pur-
poses, however, the simple geometric thin lens model is sufficient.

It does not account for a number of effects, like diffraction, geometric distortion (straight
lines are bent if off-center), chromatic and achromatic aberrations, etc. These do not play a
role in this thesis, and therefore are ignored.

Diffraction on the aperture does in theory play a role in depth of field (if the aperture
is closed below a certain minimum diameter, diffraction causes the CoC to grow again),
as do a few other effects. In a real lens, the fact that the aperture is not round but rather
a regular polygon with seven or eight vertices, plays a much bigger role (coma effect in
night photography, aperture reflections when a bright light source is in the image, etc) than
diffraction. Also, the fact that diffraction patterns are only visible for monochromatic light,
and blend into each other for light with more than one wavelength [56], makes this effect
negligible.

17



Depth-of-Field in Photography / 3.2

u

D

v’
v

C

Figure 3.5: The geometric lens model, with the object out of focus.

3.2 Depth-of-Field in Photography

In Photography, blur can have two reasons: motion or optical effects [1]. Motion can be
either motion of the camera (camera shake, which one usually tries to avoid) or motion of
the object. Motion blur of an object is used to depict the motion, especially when an object
is moving very fast. It is also possible to track the object with the camera and thus get the
object sharp and everything else blurred through motion (these examples are illustrated in
Figure 3.6 on the following page).

Because of limitations in the resolution of the human eye, points up to a certain diameter
appear sharp, so that not only one infinitely thin plane appears to be in focus, but all points
between the nearest and farthest planes whose points still are projected to circles with a
diameter less than or equal to the acceptable circle of confusion. The distance between these
two planes is called depth of field (DOF).

3.2.1 Uses of DOF

Depth-of-field is a very important means of directing the viewer’s attention in a photograph.
Focusing on a person in a crowd, for example, will guide the view to that person immedi-
ately, but will also allow the viewer to look at the other persons in the crowd and perceive
the surroundings and atmosphere – or context – of the person.

The technique is also used for portraits, where the background is just not important, and
is therefore blurred. Using the right parameters, a photographer can create a very homoge-
nous background that will be virtually invisible to the viewers, thus concentrating on the
person depicted. Using greater depth of field, it is possible to show the person in her work-
ing environment, for example, but without the objects in the environment distracting the
viewer. But still, the viewer is able to see and identify the objects.

Depth of field can also be a vehicle of suggesting that there are many similar objects: by
focusing on one of them, and showing the others out of focus, the viewer gets the impression

18



Depth-of-Field in Photography / 3.2

Figure 3.6: Examples of blur: Depth of field (left) and motion blur, with the camera tracking
the object (right)

19



Depth-of-Field in Photography / 3.2

Lens Plane

Focal Plane

Intersecting Line Lens Axis

Film Plane

Figure 3.7: The Scheimpflug rule. The film, lens, and focal planes intersect in one line.

that there are many more objects than appear in the frame.
In motion pictures, focus change is a technique that is used quite often, especially in

dialogues: two persons are visible, usually near the edges of the frame. The camera focuses
on the person who is talking, and when the other person answers, the focus changes, too.
Depth of field is also used to guide the person’s attention, or to show where a character is
looking. A good example is a scene from The Sixth Sense (Hollywood Pictures, directed by
M. Night Shyamalan), where the main character reads text from a piece of paper, which is
shown from the character’s point of view with very little depth of field, and where the focus
moves between key words as the character reads these parts.

Another photographic technique is double-exposure: By exposing the same negative two
or more times, several images are projected onto each other. This can be achieved at exposure
time, by not advancing the film between the exposures (this is not possible with all cameras),
in the lab by printing two or more negatives on the same piece of paper, or by “sandwiching”
two or more slides into the same frame. When double-exposing, one usually only uses one
image that has fine detail, like a person, and other images that are either very faint or out of
focus so that they are still identifyable, but allow the viewer to make out the main subject
without distracting too much. This is a use of the same perceptual mechanisms as depth of
field, but on a semantic level, rather than based on physics.

3.2.2 Advanced Uses

With a view camera (large format camera), the focus plane can be tilted against the image
plane, thus making it possible to take pictures that have more freedom in what is in focus.
When the film plane is tilted against the lens, the plane of focus intersects both the film
plane and the plane that is orthogonal to the lens axis in a line (Figure 3.7) — this is called
the Scheimpflug rule [43].

Physical cameras are still limited to blurring objects depending on their distance, even if
that distance is measured along an direction that is not parallel to the lens axis. But tilting
the lens already makes it easier to go to a more semantic use of depth of field.

When one is not limited to physically existing cameras, it is possible to go even beyond

20



Depth-of-Field in Photography / 3.2

Figure 3.8: An extended camera showing an object from the outside (left) and from the inside
and the outside simultaneously (right) (Löffelmann [36]).

a) b) c) d)

Figure 3.9: Different aperture shapes

a flat film plane or a round lens. Extended cameras [37, 48] can create images that are not
possible with a real camera, such as seeing an object from the inside and the outside simul-
taneously (Figure 3.8). They are harder to understand, but allow the user very fine control
over the appearance of objects.

The method proposed in this thesis is an application of a very similar idea.

3.2.3 Aperture Shape and Bokeh

Not just the size of the aperture influences the appearance of an image, but also its shape. The
theoretical shape of the aperture is a perfect circle (Figure 3.9a), but that is never achieved in
a real lens. Real lenses have polygonal shapes, similar to Figure 3.9b and c; some lenses also
have curved elements for forming the aperture, thus creating a shape closer to a circle. Some
lenses have even more complex shapes for special uses – like the one in Figure 3.9d, which
creates a very soft, unreal image (Figure 3.10 on the next page).

The appearance of blurred parts in an image is called bokeh [42], which is the Japanese
word for this quality of an image. It is difficult to give general rules about the bokeh of a
lens, because it is not only dependent on the aperture shape, but also on other parameters
of the lens (which mostly influence if the circle of confusion is really equally bright, or has a
light or dark rim, etc.). But it is still generally true, that it is nicer the rounder the aperture is.

One effect where the aperture shape is visble very clearly is lens flare. A bright object
creates visible reflections in the lens system, which have the shape of the aperture. This has

21



Depth-of-Field in Photography / 3.2

Figure 3.10: Example images for aperture shapes. An image taken with a round stop (left),
and one taken with a stop similar to the one depicted in Figure 3.9d (right). Images used
with kind permission from Dr. Heinrich Tauscher.

nothing to do with bokeh, but illustrates the effect of the lens shape – this effect gives the
viewer quite some information on the lens: the number of lenses (which is half the number
of reflections), their spacing, and the aperture shape.

3.2.4 Parameters

Depth of field depends on the perception of sharpness. A point (not in the mathematical
sense) is perceived as sharp when it appears smaller than the resolution of the human eye.
As a rule of thumb, this is the case for points with a diameter smaller than about 1

1000
of the

distance between the eye and the image.
In photography, the maximum CoC diameter Cmax depends on the magnification of the

final image (i.e., how much the slide or negative has to be magnified to be printed or pro-
jected) and the viewing distance. As a standard, a Cmax of 0.03mm on the film is generally
considered sufficient for 35mm photography.

In computer graphics, the Cmax can be set to 1 Pixel, if the image is to be displayed on a
standard screen. For projections, or when larger or higher resolution screens are used, that
value would have to be adapted accordingly.

22



Chapter 4

Semantic Depth of Field

This chapter describes the main contribution of this thesis: Semantic Depth of Field (SDOF).
SDOF allows the user to select relevant parts of a visualization that are then pointed out by
deemphasizing all the rest through blur.

The building blocks of SDOF are discussed in the following sections, and are summarized
in Figure 4.1 on the following page as well as Table 4.1 on page 28 and Table 4.2 on page 30.

4.1 Spatial Arrangement

In information visualization, usually some kind of layout algorithm is used to arrange ob-
jects in the visualization space (typically 2D or 3D). The special challenge of information
visualization is the fact that data often does not have any inherent structure that naturally
translates to a layout. Mapping functions are a very important part of visualization because
they determine how well the user can build a mental map that he or she can use to under-
stand and navigate the visualization. Changing the layout often means having to learn a
new layout, and thus losing one’s ability to navigate easily.

In our model, the spatial mapping function is called place; it translates from the original
data domain (DD) to an intermediate two- or three-dimensional visualization space (VS2D
or VS3D).

One input SDOF requires from the application in use is a certain spatial arrangement
of data items. As we will show in the remainder of this section, both 2D and 3D arrange-
ments are possible with SDOF. In cases where data items inherently exhibit spatial locations
anyhow, this part of SDOF becomes trivial.

However, in many cases, especially in information visualization, the data to be depicted
does not have any inherent spatial structure and therefore, in principle, there is a significant
freedom to place data items in visualization space. In database visualization, for example,
usually no inherent spatial sorting of rows and columns exist – how to arrange data items,
instead, is an integral part of the visualization procedure. Usually, the spatial arrangement
which is chosen by a visualization algorithm tries to reflect the distances between data items
with regard to a certain similarity metric. Automatic layout algorithms are used to optimize,
e.g., the drawing of the nodes of a graph [9]. Of course, one option of arranging data items
can be used to reflect their relevance. An example would be to pan all the visualization space
such that the object of interest finally resides right in the center of the projection. More gen-
erally, the distance metric in use for automatically laying out the data items can be defined

23



Relevance / 4.2

Photorealistic
Adaptive
...

Distance
Selection

2D
3D

Camera Model
Viewing and

Data

...

Arrangement
Spatial

and Blurring
Relevance

Figure 4.1: SDOF Building Blocks.

such that it reflects the relevance of data items. Consequently, the most relevant data items
would be automatically placed near the center of the projection, thus being easily perceived
in a quick manner.

However, there is a major problem with this approach: In cases where data items do not
have any inherent spatial structure and, therefore, some synthetic layout has to be chosen
for visualization, the user needs to form a mental map of the visualization (see Section 2.1).
The user needs to learn the visualization layout in order to be able to work with it. As a
consequence, it is necessary to avoid major changes to the data layout as much as possible.
Therefore, in cases where relevance of data items changes during a visualization session
(which is the usual case), other techniques for enhancing objects of interest, like SDOF, are
required.

For providing a separable model of building blocks we model the SDOF procedure as
described above in two steps:

in 2D: DD
place2D

����! VS2D
view2D

����! CC (4.1)

in 3D: DD
place3D

����! VS3D
view3D

����! CC (4.2)

where DD denotes the domain where the data items reside; VS is the intermediate visualiza-
tion space, in which the spatial arrangement takes place; andCC are 3D camera coordinates –
the view direction coincides with the positive z-axis, x and y correspond to the orientation
of the projection. The function place arranges objects either in 2D or 3D visualization space,
whereas view allows to specify the projection of the visualization layout. Of course, if no
SDOF is used, the third dimension of CC is not needed in the 2D case. However, for applying
a general camera model later on, it is useful to use a joint notation here.

4.2 Relevance

Independently of the spatial arrangement, the blur level of each object is determined. This is
done in two steps: First, each object is assigned a relevance value r by the relevance function
rel. The value of r is in the interval [0; 1], where 1 means the object is maximally relevant,
and 0 means the object is completely irrelevant.

DD
rel

��! RI; “relevance interval” RI = [0; 1] (4.3)

24



Relevance / 4.2

r

bl
ur

e)

1 0

r

bl
ur

c)

01
r

bl
ur

d)

1 0

r

f)
bl

ur

1 0

1

r
bl

ur

a)

1 0
r

bl
ur

b)

1 0

continuous blur with step

discrete blur levels continuous blur

exponential blur

everything sharp binary blur

Figure 4.2: Some possible blur functions.

This relevance value is translated into a blur value b through the blur function blur later on.
We distinguish three types of relevance function: binary, discrete, and continuous ones.

A binary function only classifies objects of data values into two categories: relevant and
irrelevant; a discrete function yields a number of different classes, e.g., 0, 0:5, and 1; while a
continuous function uses the whole range between 0 and 1.

The relevance function is application-specific and thus can be very different between
applications (see Section 4.6.2 for examples). It can be changed almost continuously during
a visualization session to get different views on the data. This is in contrast to the blur
function, which will usually not change, but only its parameters will be adjusted.

Different relevance metrics for objects have to be offered by the application, that have to
deal with the specific information and tasks the application is made for. Examples for binary
relevance measures are the set of chessmen that threaten a specific piece in a chess tutoring
system, the layer containing roads in a GIS application, or all incidents related to high blood
glucose in a graphical patient record. Continuous functions could express the age of files
in a file system viewer, the recent performance of stocks in a stock market browser, or the
distance of cities from a specified city in terms of flight hours.

25



Blur / 4.3

0
r

b

1

h

g

maxb

1

t

Figure 4.3: The standard blur function.

4.3 Blur

The function blur translates a relevance value into a blur level that can be used for drawing
an object.

RI
blur

��! BL; blur levels BL = [0;1) (4.4)

For our purposes, blur levels are always measured in pixel units. Therefore, a value of 1
or below denotes a perfectly sharp depiction of an object, any larger value makes the image
more and more blurred.

The blur function can theoretically take on any shape (like the relevance function) to best
suit the application. Some examples are given in Figure 4.2 on the page before: a constant
function, a simple step function, a “staircase” function consisting of several steps, functions
that consist of a step and a linear or exponential part, etc.

For practical purposes, we have found the function depicted in Figure 4.3 (which we
call the standard blur function) to be sufficient for our current applications, however. We also
believe that it is easier for users to work with a consistent blur function rather than having
to adjust to a different one for every application – even at the cost of slightly less control.

In the standard blur function, the user can specify the threshold value t, the step height h,
and the maximum blur diameter bmax. The gradient g is then calculated by the application.
Some details on the parameters of this function are given in Section 4.6.1)

It would be possible, of course, to map data values directly to blur levels. However,
separating the mapping from data to screen space from visualization parameters gives the
user more direct and intuitive control (see Figure 4.4 on the next page). This is important for
several reasons: a) the relevance mapping can be changed without changing the parameters
for blurring (e.g., to show different data dimensions); b) different blur functions can be used
for the same relevance mapping (even though the use of the standard blur function appears
to be the most useful default); c) the parameters to the blur function can be changed for
different output media, like screens, printers, etc. without affecting the relevance mapping,
or for looking at different sets of information.

Blur levels can be seen as a one-dimensional extension to visualization space, together
acting as an interface between visualization design on the one hand, and rendering on the

26



Viewing and Camera Models / 4.4

objects/data visualization

(selection, etc.)
visualization parameters

r

semantic operations

blurrel

Figure 4.4: Two functions are used to map objects to blur diameters. This makes independent
control of semantic and technical visualization parameters possible.

other:

in 2D: DD

8<:
place2D

����!

blur Æ rel

����!

9=; cVS3D = VS2D � BL (4.5)

in 3D: DD

8<:
place3D

����!

blur Æ rel

����!

9=; cVS4D = VS3D � BL (4.6)

4.4 Viewing and Camera Models

In order to provide a consistent model, and to embed the idea of SDOF in existing work in
computer graphics, we discuss camera models for generating images with SDOF. Depending
on whether the visualization space is two- or three-dimensional, different camera models
can be used to finally achieve the SDOF effect. The camera provides two functions: camera

projects data values from an intermediate space (where the information was laid out by the
place function) to screen space; and dof , which calculates the blur level of each data item
depending on its z coordinate and the zfocus value the camera is currently focused at.

In the following, we describe two camera models: a regular photo-realistic camera (camerap)
that can be used in the 2D case; for 3D, we present the adaptive camera (cameraa).

4.4.1 2D SDOF and the Photo-realistic Camera

In the 2D case, objects get a third coordinate in addition to their x and y values. This addi-
tional z value depends on the intended blur diameter b of the object: If the camera is focused
at zfocus, an object with intended blur b has to be moved to a distance of z from the lens of
the camera (see Figure 4.5 on the following page): where D is the effective lens diameter as
defined in the thin lens model [31], and f is the focal length of the lens in use.

The above equations apply to camera models such as distribution ray tracing [8], linear
post-filtering [47], etc. (see Section 5.1 for a discussion).

In the 2D case (2D spatial arrangement), vectors from cVS3D are three-dimensional, i.e.,
containing a 2D location and a blur level b. As a next step in the SDOF procedure, a viewing

27



Viewing and Camera Models / 4.4

2D SDOF scene
scene

relevant

irrelevant focus plane

3D intermediate rendered image

Figure 4.5: The photo-realistic camera and 2D SDOF. Objects from the original scene (left)
are moved in the Z direction (middle) to create the right blur. The final image (right) is then
rendered with a photo-realistic camera.

data[i]

place2D

�������!

rel

��! r
blur

��!

0B@ x̂

ŷ

b

1CA view2D

����!

dof
�1
p

��!

0B@ x

y

z

1CA camerap

����!

 
�x

�y

!

DD � Rn RI = [0; 1] cVS3D CC (zfocus fixed) IS

Table 4.1: 2D SDOF: from data items to blurred images

transformation is needed as well as a mapping to convert blur levels into depth values:

cVS3D
8><>:

view2D

����!

dof
�1
p

����!

9>=>; CC
camerap

������! IS (4.7)

where CC are 3D camera coordinates as described in Section 4.1, ready to be rendered into
image space (IS) using the standard photo-realistic camera (thin lens model, zfocus fixed).
Note that this case directly corresponds to the basic idea, illustrated in Figure 4.5.

The function dof
�1
p , which is responsible for the computation of the third camera coor-

dinate (z) from blur levels, is the inverse of dofp, which calculates a blur level b from the
distance of an object from the lens, z. As an additional parameter, it needs the distance at
which the camera is currently focused, zfocus. If the thin lens model is used (see Equation 3.1
on page 15), dofp and dof

�1
p are defined as follows:

b = dofp(z; zfocus) =

����Df(zfocus � z)

zfocus(z � f)

���� (4.8)

z = dof
�1
p (b; zfocus) =

D + b

D
zfocus

+ b
f

(4.9)

D =
f

a
(4.10)

where D is the effective lens diameter (expressed as a ratio of the focal length f and the

28



Viewing and Camera Models / 4.4

aperture number a, see Equation 4.10 on the page before) and f is the focal length of the lens
in use.

The above equations apply to camera models such as the ones described in Chapter 3,
and can be used with some of the implementations presented in Chapter 5.

If the camera uses perspective projection, the objects will have to be scaled and moved
(if off-center) to compensate for depth effects that are not desirable in this case.

All the steps necessary for 2D SDOF that were presented in this section are summarized
in Table 4.1 on the preceding page.

In contrast to this “backwards compatible” model, fast and efficient implementations of
SDOF are described in chapter 5, which use entirely different methods.

4.4.2 3D SDOF and the Adaptive Camera

In the 3D case, of course, it is not possible to directly map blur levels to depth values, because
the spatial arrangement of data items already contains a third dimension. However, using a
simple extension of the photo-realistic camera, it is possible to also handle the 3D case.

In this case, cVS4D-vectors (containing the three space coordinates and the blur level) are
mapped into extended camera coordinates:

cVS4D
8><>:

view3D

����!

dof
�1
a

����!

9>=>; dCC = CC� FV
cameraa

������! IS; (4.11)

where CC is extended by one additional dimension of focusing values (zfocus, FV), becoming
four-dimensional.

The adaptive camera is a modification of a photo-realistic camera that can change its fo-
cus for every object point to be rendered. This is easily possible with object-order rendering,
but can also be achieved when rendering in image order. In contrast to the photo-realistic
camera, the adaptive camera can render SDOF in 2D and 3D scenes. The photo-realistic cam-
era is, in fact, a special case of the adaptive camera (which simply stays focused at the same
distance for the whole image).

Function dofa is defined like dofp in Equation 4.8 on the page before. Different to the 2D
case, now the inversion of dofa must be resolved for zfocus-values:

b = dofa(z; zfocus) = dofp(z; zfocus) (4.12)

zfocus = dof
�1
a (b; z) =

D

D+b
z
�

b
f

(4.13)

An example for an adaptive camera is splatting [22, 62], which is a volume rendering tech-
nique, but which also can be used for information visualization. By changing the size of the
splat kernel depending on the b value of a data point, SDOF can be implemented easily.

Another possibility is to use pre-blurred billboards [41]. Objects are rendered into mem-
ory, the images are then blurred and mapped onto polygons in the scene.

Table 4.2 on the following page summarizes all necessary steps for 3D SDOF (and also
makes it easier to compare with 2D).

29



Properties and Applicability / 4.5

data[i]

place3D

�������!

rel

��! r
blur

��!

0BBB@
x̂

ŷ

ẑ

b

1CCCA
view3D

����!

dof
�1
a

��!

0BBB@
x

y

z

zfocus

1CCCA cameraa

����!

 
�x

�y

!

DD � Rn RI = [0; 1] cVS4D dCC IS

Table 4.2: All steps necessary for visualizing data values data[i] with 3D SDOF.

4.5 Properties and Applicability

This section discusses some high-level properties of SDOF, how it can be principally applied,
and what challenges it brings with it.

4.5.1 Properties

When discussing the properties of SDOF, we must first look at the features of blur.

� Blur removes high spatial frequencies and reduces contrast. These two effects cannot
be separated when blurring, and they together create a very familiar impression of
blur. How much each one of these effects contributes, and if they would be effective
on their own, needs further investigation.

� By removing high spatial frequencies, blur also removes fine details, which can be
problematic when using icons, for example. But this “price” that has to be paid is
rather low considering that only irrelevant objects are blurred (see below).

� The borders of blurred objects become fuzzy and transparent, and if an object is small
compared to the blur level, the whole object can become transparent. This helps reduce
the effect of occlusions, and also reduces the distracting effects of large but irrelevant
objects in the display.

� Blurred objects appear smaller, even though they get larger. The blurred border of ob-
jects extends beyond the original one, but because that border is now semi-transparent,
the underlying object appears to be smaller. If this is desirable depends on the use.
When size is chosen as a visual cue, it is certainly a disadvantage; but when size does
not play a role, this effect makes the object even less interesting to the viewer, and is
therefore desirable.

SDOF, being yet another F+C highlighting technique, has the following properties that
make it an addition to the visualization toolbox:

� SDOF does not distort geometry. It is therefore usable when shapes of objects or parts
of objects (glyphs) and positions are used as visual parameters. We also believe that it
is easier to recognize blurred icons than distorted ones.

30



Properties and Applicability / 4.5

� SDOF does not alter colors. If color is used to convey meaning, or the visualization is
to be used by color-blind people, SDOF can be used instead of color highlighting. This
also means that SDOF is independent of color, and can therefore be used when only
gray-scale is available (e.g., printed images).

� SDOF changes the irrelevant objects, rather than the relevant ones. It is therefore useful
whenever the relevant objects contain a lot of information whose perception might be
impeded by changes.

4.5.2 Applicability

SDOF requires concrete queries to the data (which can be simple, but have to be formulated
nonetheless), and is therefore useful for analyzing and presenting data.

SDOF can serve as an additional aid to guide the viewer’s attention, together with brighter
colors, etc., or as a completely separate dimension of data display (this last idea has turned
out to be only of limited use, see the user study in Chapter 7). Because blur is very naturally
associated with importance (even more than color), we do not believe that it is suitable for
true multi-variate data visualization. It can, however, add another dimension for a short
time, when the displayed data is to be queried.

Blurring needs space, so when a lot of very small objects are depicted, it is only of little
use. The application can deal with this problem by drawing the objects in such an order
that sharp objects are drawn on top of blurred ones. But this can introduce artifacts, where
parts of the display appear sharp only because of the contrast between sharp objects and the
background.

4.5.3 Challenges

SDOF images depend on the output device (similar to tone mapping [40], for example). The
reason for this is that blur is not an absolute measure, but depends on the viewing angle that
the image covers – this is also the reason why small images look sharper than larger ones:
the circles of confusion are not visible in the smaller version, or at least to a smaller extent.
We use a calibration step at program startup (and suggest a default value) to account for this
problem (see Section 4.6.1).

This problem also has to be taken into account when presenting information to a large
audience, where people are at very different distances from the screen the image is shown
on.

Images that contain SDOF effects are also problematic when lossy compression is used
(like MPEG, JPEG, etc.). In this case, artifacts can be introduced that create a high contrast in
a blurred area, and thus distracting the user. But SDOF is most useful in interactive applica-
tions, so this problem should play no big role in practice.

Another factor that must be considered is that people do not like looking at blurred parts
of a display to gather information (this is one of the results of our user study, see Chapter 7).
So care must be taken that only truly irrelevant information is blurred, and that the user has
a quick way of changing the display back to a completely sharp depiction – we call this the
auto focus.

One problem we have not yet been able to investigate quite enough is the interplay be-
tween blur from SDOF and other depth cues in 3D applications. While SDOF appeared to

31



Parameterization / 4.6

be quite intuitive and very visually effective in the 3D sPGNViewer (Section 6.5), several
people have expressed their concern about this (potential) problem.

4.6 Parameterization

Parameterization of SDOF consists of two parts: Adaptation to current viewing parameters
and user interaction to change the relevance mapping.

4.6.1 Output Adaptation

We ask the user to select two blur levels on program startup: a) the minimal blur level that
can be easily distinguished from a sharp depiction – this value translates to the step height
h in Figure 4.3 on page 26; b) the minimal difference in blur that can be distinguished – this
value can be used to calculate g, if the smallest difference between any two r values is given.
Because this is generally not the case, the blur function is adapted for every image after
examining the r values of all objects. These values can vary with the use of the generated
image (printing out, projecting onto a wall, etc.), the use of different screens, etc.

In our user study (Chapter 7) have shown values between blur levels of 11 to 15 pixels
as easily distinguishable from sharp objects, even when images were only shown for a very
short time. The performance for 7 pixels was significantly worse. These values can be used
as defaults for working on a 1024x768 17” screen at normal viewing distance (about 80cm).

4.6.2 User Interaction

Interaction is a key part of SDOF. Blurred objects are unnatural, and it is therefore important
for the user to be able to change the relevance mapping and blur function quickly, and to
return to a depiction that shows all objects in focus.

Depending on the application, there are different usage patterns. In many applications,
it is useful to be able to point at an object and say “Show me all objects that are older than
this”, “Show me all chessmen that cover this piece”, or “Show me the cities weighed by their
railway distance from this city”.

Another way is to select values independently of objects: “Show me all threatened chess
pieces of my color”, “Show me all files that were changed today”, or “Show me all current
patients weighed by their need for drug xyz”.

Another feature of interaction is the auto focus (described in Section 4.5.3). This function
can either be initiated by the user, or performed automatically after a certain time by the
program. Especially if it is triggered by the program, the auto focus must be animated, so
that the user can follow what is happening, rather than suddenly being presented with an
entirely different image.

But also other transitions between different displays always have to be animated to en-
able the user to follow the change and immediately see which objects are relevant in the new
display. This is also another reason for separating r and b (see Section 4.2): The animation is
done between the old and the new b values, rather than the r values. This is because the blur

function can contain discontinuities that can lead to jumps between blur levels of objects,
and are therefore undesirable.

32



Usage Types and UI Metaphors / 4.7

4.7 Usage Types and UI Metaphors

There are many different ways in which SDOF can be used in an application. SDOF can be
an enhancing factor or be the basis of completely new interface metaphors (Section 4.7.2).
This section describes some ideas for such usage types. Application examples are described
in Chapter 6 in more detail.

4.7.1 2D SDOF

Displaying information in 2D, it is possible to use blur to show a selection or any other
distance function. This is quite different from DOF as used in photography (which only
exists if there is a third dimension), but still appears to be very effective and useful.

One example is a 2D chess board (Section 6.5) that shows which pieces threaten a specific
piece, or how well a particular square on the board is guarded by other pieces of the same
color. This program could be extended to a tutoring system, where SDOF is used to point
out certain constellations or possible moves.

It is also possible to blur text that only serves as context in a keyword search, for example
(Section 6.1). The keyword is marked with color, for example, the sentence containing it is
displayed sharply, and the rest of the page is blurred. It is thus easier to find the immediate
context of the word and to judge whether this hit is useful.

Instead of text, blurring objects in a scatter-plot program is also possible (Section 6.3).
This makes it possible to analyze the data by querying it for different properties.

Another example is a window manager that blurs all screen areas that are currently not
used. Thus, a window showing the output of a program, or tracking a communication chan-
nel could be blurred so that it does not interfere with other work currently done by the user.
If new messages arrive, the scrolling would be visible. It would also be possible to bring the
window to focus on such a case, and thus directly guide the user’s attention to it, without
popping up a window or otherwise interfering with the user’s current task.

4.7.2 Layered 2D SDOF

When several 2D layers of information are put on top of each other, it is possible to provide
the user with an intuitive way of choosing how much and which information to display
crisply.

Independent Layers

A number of 2D depictions at the same level of detail are put one above the other, like
floor plans in architecture drawn on tracing paper. The layers are translucent (the level of
translucency can be changed), so that the other layers can be seen through the ones on top.
Any subset of these layers can be rendered out of focus, so that the information on the in-
focus layers becomes much more dominant.

For a user interface that is based on layering inspired by transparent paper [3], the idea of
wiggling the different layers is presented, so that the different layers can be discriminated.
We believe that SDOF can show this effect much more effectively, and also provide many
other means of interaction.

33



Usage Types and UI Metaphors / 4.7

Stacked Layers

Using the same topology as for independent layers, this mode is closer related to the photo-
graphic metaphor. Only a subset of neighboring layers is in focus here, all other layers are
blurred according to their distance from the nearest in-focus layer. The rate of blurring can
be selected by the user. Additionally, it is possible to limit the number of blurred layers that
are shown on top of the first in-focus layer. Any layers beyond this threshold are simply
not displayed. This avoids too much clutter when navigating between layers. Moving the
focus through these layers is very similar to changing the focus on a camera, and is therefore
relatively easy to understand.

An example for layered 2D SDOF is a map viewer that allows many layers of geographic
information (streets, mountains, rivers, telephone lines, weather data, population data, etc.)
to be displayed at the same time. The user can select what information is shown and how
sharp, thus focusing on certain information while at the same time getting the context of the
depiction.

Hierarchical Layers

If data from several levels (semantic or from different magnification levels) is put together
into one image, the different levels can be included more easily if there is a smooth focus
change between layers with different detail levels while the image is zoomed (Figure 4.6
on the following page). It is thus possible to immediately see the correspondences between
objects on different layers, without having to switch back and forth between them. Magni-
fication and blur can change simultaneously or independently of each other, depending on
the user’s needs. Unlike the Macroscope (see Section 2.4), the different magnification levels
are not drawn in the same size over each other, but maintain their relative sizes.

Thick Layers

Layers as used above are 2D layers with no extension into the third dimension. A thick layer
combines many thin layers into one, which then behaves like one thin layer in some respects.
But with a thick layer, it is possible to navigate within its sub-layers (independently of the
other layers), and also to tilt the focus plane, and so get an image that combines information
from different sub-layers, thus showing a development over time, for example.

4.7.3 3D SDOF

The above uses of SDOF were only special cases of 3D SDOF. In 3D, it is possible to shift
the focus between any objects, similar to the 2D case. Together with other interactions like
navigation, pan, zoom, rotation, the user can have the system point to the objects that meet
certain criteria, etc.

If more complex objects are displayed (like 3D glyphs), it is possible to assign a different
b value to each vertex, thus making it possible to distinguish between different selection
functions on the same object.

Any hierarchical data could be displayed using nested, translucent boxes; these boxes
are blurred when the user focuses on their contents, while the contained objects are blurred
(and the boxes drawn crisply) when the higher hierarchy level is of interest. This also solves

34



Usage Types and UI Metaphors / 4.7

Figure 4.6: Hierarchical Layers. Overview (left), zoomed in view with blurred context
(right).

the problem of how to draw these boxes so that they can be distinguished: because their
contents are shown (but not in detail), they are recognizable.

Another example of 3D SDOF is a 3D file system viewer that displays files and directo-
ries as objects in 3D space, and that allows searches and selections, the results of which are
displayed by blurring all objects that do not match the criteria. When looking for objects
that have a certain age, it displays the difference from the searched age with continuous blur
levels.

The chessboard example cited above in 2D can of course also be extended to 3D (Sec-
tion 6.5).

35



Chapter 5

Implementation

For SDOF to be used as a method in real applications, rendering has to be fast enough to
get interactive frame rates. This is a very important aspect, because users will not accept
a program where they have to wait for the image to appear – especially not in information
visualization. SDOF also is a quite dynamic feature that needs to be able to change quickly
and to do so with intermediate steps (animation).

The low speed of existing blur methods seems to be one of the main reasons why blur is
so little used in computer graphics and especially in visualization. Section 5.1 describes ex-
isting methods for blurring, which are mostly tied to depth-of-field quite strongly. Our own
much faster implementation – appropriately named FastSDOF – is described in Section 5.2.2.

5.1 Depth-of-Field Methods

The simplest requirement that SDOF should fulfill is that there is a fast implementation of it.
This is important simply because a method that will only run reasonably on very high-end
hardware is unlikely to be widely accepted as a tool for visualization.

This section lists existing methods for rendering depth of field in computer graphics.
They are compared to each other, and their applicability is analyzed in Section 5.1.9.

5.1.1 Distribution Ray Tracing

Maybe the most physically motivated approach (if the geometric model (Section 3.1.2) is
considered to be sufficient) is to use ray tracing, and to sample many rays across the lens
for every pixel and calculate the average of their colors. The lens diameter can be changed
to get images with more or less depth of field. This is what is done in distribution ray
tracing [8] (originally called distributed ray tracing). Using this technique, rays can also be
distributed over an area in the image, as well as over time, making effects like motion blur
and penumbras possible.

This method is of course only possible when the system uses ray tracing anyway, and it
imposes a cost that depends on scene complexity and screen resolution. It has the advantage
of being very close to the model, so that it is possible to directly use parameters from real lens
system, and compare the results with photographs, or maybe include them in photographs
or movie scenes. A principal disadvantage of ray tracing is its high computational cost,
which makes this method extremely slow.

36



Depth-of-Field Methods / 5.1

5.1.2 Linear Postfiltering

Given an image taken by a pinhole camera and depth information for every pixel (a so-called
Z-Buffer), it is possible to simulate DOF. This can be done by calculating the CoC for every
pixel depending on its depth, and accumulating all the CoCs in a new image, yielding an
image with DOF [47].

This model does not take occlusion into account, which causes “bleeding” of out-of-focus
points in the background into in-focus objects in the foreground. This effect is not existent
in a real lens system1, due to occlusion of the blurred parts of the more distant objects by the
closer object.

The parameters for this method can be closely modeled after a real lens, but are indepen-
dent of the parameters used in generating the image. This leads to a model that is somewhat
less integrated than with distribution ray tracing. On the other hand, the complexity of this
algorithm only depends on the image size, not the scene complexity. The scene does have an
influence on the complexity, of course, because many pixels with large circles of confusion
will cause more pixel accesses (for distributing the pixel’s contribution).

5.1.3 Ray Distribution Buffer

Similar to linear postfiltering, the ray distribution buffer (RDB) [56] is a postprocessing
method. It deals with the occlusion problem by introducing a Z-buffered color buffer of
sub-pixels for every pixel. It calculates the CoC for every pixel in the original image, and
distributes its color information to the RDBs of all the pixels that are inside that CoC. The
cell of the RDB that the contribution is added to depends on the incident angle that the ray
has on this pixel (this incident angle is simply calculated from the relative position of the
two pixels and the z value). The RDB is Z-buffered, so that only nearer values can overwrite
exiting ones for the RDB entry of the same pixel. The final image is calculated by first finding
any occluding objects that would determine the color of the pixel (thus avoiding bleeding),
and then averaging all the RDB cells of each pixel.

Also similar to postfiltering, the complexity of this method depends mainly on the image
size, but also slightly on scene complexity.

5.1.4 Accumulation Buffer

The accumulation buffer was proposed in 1990 [15], and has in the meantime become a stan-
dard part of OpenGL. It allows the accumulation of several images, with a weight associated
with each of them. Thus, it is possible to draw the same scene from different points sampled
across the lens (similar to distribution ray tracing, Section 5.1.1), and combine the images.
Depending on the number of images accumulated, this can yield very good quality images
with depth of field.

The accumulation buffer is now also used in computer games for DOF effects. Because
games require certain minimum frame rates, only a small number of images (typically eight)
are accumulated. This leads to images that look very bad if objects are very far away from
the focus plane and thus move for large distances so that the individual copies of the objects
can be seen.

1However, depending on the contrast situation, this effect does exist to some extent in real lenses, but is
probably due to reflections within the lens system.

37



Depth-of-Field Methods / 5.1

The complexity of this method depends on the scene complexity as well as on the image
size. In consumer graphics cards, the accumulation buffer is rather slow, so for larger scenes,
alpha blending [46] can be used (which usually has lower accuracy, but is sufficient for many
purposes).

5.1.5 Splatting

Depth of field can be understood as a 2D convolution operation, with the convolution ker-
nel containing the contribution of the current pixel to all other pixels within its circle of
confusion –this is in fact the same operation that can also be achieved with the accumulation
buffer, if the scene is not redrawn from its 3D representation, but only the rendered image is
moved and accumulated.

Thus, depth of field can be implemented by means of Splatting [61, 62]. Splatting is a
direct volume rendering technique that works by convolving a kernel with a slice through
a volume data set. This operation is needed to reconstruct the continuous volume from the
sampled data (voxels). The size and shape of the footprint (the projected kernel) has a great
influence on the appearance and usefulness of the generated image. By making the kernel
dependent on the distance of the slice (which is always parallel to the plane which the image
is projected onto) from the focus plane, it would be easy to implement depth of field with
splatting.

There are two general directions in which slices can be drawn: back-to-front and front-
to-back (as seen from the projection plane). In back-to-front splatting, a nearer slice is drawn
over a slice that is farther away, thus creating correct visibility. Parts of the image can also
be translucent (so that the inside of the object can be seen), which means that the nearer slice
will be accumulated with the existing color values.

In front-to-back splatting, a new value is added only when the slice in front of it is still
translucent enough so that it can be seen. This makes it possible to terminate the rendering
process early (at full opacity).

Splatting is of course dependent on scene complexity, but also depends on the type of
rendering and on the properties of the footprint.

5.1.6 2 1

2
D Method

A method similar to simple postfiltering is to draw objects into several planes depending on
their Z position, blurring the planes separately, and then compositing them [55].

This method is of course limited to depictions where the background can be easily sepa-
rated from the objects in the foreground. Objects that extend far in the Z direction are hard
to depict this way. Another problem is that the partial translucency of blurred objects in the
foreground is hard to implement, and has not been done in the cited paper. It is also difficult
to control the blurring, which is very dependent on how well the objects fit into different
planes and the distance between them.

5.1.7 Light Fields

Light fields [14, 33, 51] are four-dimensional representations of the illumination situation in
a scene. A light field describes the amount of reflected light for every point in 3D space and
in every direction (which is 2D, because only the direction in two planes — one parallel and

38



Depth-of-Field Methods / 5.1

Figure 5.1: Illustration of thick lens model in light field rendering (based on Heidrich et
al. [20]).

one perpendicular to the surface — plays a role), yielding a 5D description of the scene. If
the model is restricted to solid objects, it can be reduced to four dimensions by projecting
their surfaces onto cubes, and folding the sides of those cubes so that they end up in one
plane.

Images of a scene can be calculated by projecting slices through a light field onto the
screen. This can be done using texture mapping hardware and is therfore rather efficient.

It is also possible to do this while at the same time simulating lens effects like depth of
field and distortions (barrel distortion, aberration) [20]. This method uses a thick lens model
(i.e., one with a lens that consists of two sides with different curvature), which can model
some simple lens systems as used at the beginning of the 20th century. First, a projection is
done from the scene onto sample points on the lens using the outside lens curvature, and
then projected to the image plane using the inner curvature (see Figure 5.1).

The lens surfaces are subdivided so as to minimize the error introduced by assuming a
simple central projection for every point on the lens (which is generally not the case).

Like distribution ray tracing, this method is very much oriented on the physical basics of
the simulated effects, and can therefore easily be parameterized for creating images that fit
together with real images from a camera.

5.1.8 Importance Ordering

In the above methods, DOF is calculated for a single image, and therefore has to be recal-
culated for every image in a series, even when there is high correlation between the frames,
like in a movie scene.

Therefore, importance ordering [10] remembers the Z position, circle of confusion diam-
eter, and color of all pixels from the previous frame. Changes in these parameters are then
classified into different importance classes, so that the most important pixels (the ones that
have changed most) can be updated first. Thus, it is possible to interrupt the algorithm at
any time and still get a usable image that already contains the most noticeable effects, or to
set a limit on the amount of pixels updated for every frame.

The DOF method used is linear postfiltering (Section 5.1.2), with the additional rule that
the circle of confusion of a pixel can only influence pixels with a Z value larger than that

39



Depth-of-Field Methods / 5.1

Properties

Methods C
lo

se
to

P
h

ys
ic

al
M

od
el

P
os

tp
ro

ce
ss

in
g

In
d

ep
en

d
en

ce
fr

om
S

ce
n

e
C

om
p

le
xi

ty

N
o

B
le

ed
in

g

C
or

re
ct

Tr
an

sp
ar

en
cy

S
p

ee
d

Linear Postfiltering � � +
Ray Distribution Buffer � � � +
Importance Ordering � � � +
Light Fields � � -
Accumulation Buffer � � � ++
Distribution Ray Tracing � � � - -
Splatting � � -
21
2
D Method � +

Table 5.1: Comparison of the properties of different visualization methods.

pixel (i.e., no bleeding into objects that are closer to the viewer). This seems to effectively
lead to the same results as the ray distribution buffer (Section 5.1.3).

This is not really a new method (even though the adaptation of linear postfiltering is
interesting), but it is a very useful extension to existing postprocessing methods if used for
more than just static images.

5.1.9 Comparison of Methods and Discussion

The following list describes the key features that DOF methods should have. Table 5.1 shows
which methods have which features.
Close to Physical Model. Is the rendering process closely modeled after the lens model?
This usually leads to images that look more realistic, and is therefore generally useful.
Postprocessing. The method is applied to the finished picture as generated with a pinhole
camera model.
Independence from Scene Complexity. Every method is at least somewhat dependent on
scene complexity, because the 3D structure of the scene determines how many large and
small circles of confusion have to be rendered. But if the method is independent of the 3D
description of the scene, different materials, etc., this columns is ticked.
No Bleeding. If an object that is far away and out of focus can contribute to a pixel that is
closer to the camera and in focus, the closer object appears to be translucent. This is called
bleeding, and not a desired property.
Correct Transparency. An object that is out of focus becomes somewhat transparent. But
only the outermost part does, where some rays can get past it and “see” the object behind.
Speed. Methods should be fast, of course. It is very hard to compare the speed of the
published methods (which were published over a relatively long time, and often did not
contain detailed information on their actual speed), so only a relatively crude idea of the
relative speeds can be given in Table 5.1.

Most of the methods described can be used for Semantic Depth of Field. All of them

40



Fast Methods / 5.2

require some changes for this, because SDOF has different requirements than conventional
DOF. Interestingly, a close connection to a physical model now is a disadvantage.

Considering its integration with OpenGL, the accumulation buffer would be the “canon-
ical” solution for SDOF. By not drawing the entire scene from several viewpoints, but only
the objects that are displayed as blurred, a very realistic image is attained with a rather sim-
ple method. Unfortunately, the accumulation buffer seems to be implemented in software
only on consumer graphics cards2.

Another method that is suitable for SDOF is linear postfiltering. Instead of using the real
depth values of pixels to determine the size of the circle of confusion, a “Z2-Buffer” could
be introduced that contains values that are based on the importance of objects. The big dis-
advantage of this method is that it is quite slow and cannot be implemented using hardware
at all (except for rendering the original image, which would then have to be transferred to
main memory and back to the frame buffer, which is slow).

Splatting would also be a possibility, but seems to be even slower than linear postfilter-
ing, and is not suited well for information visualization. Depth of field (semantic or not)
seems to be rather easy to add to an existing splatting program, however.

The 2 1
2

D Method is in principle usable for SDOF. Rather than grouping objects by their
position, they could be grouped by meaning, rendered into different planes, and blurred
independently. But this does not answer the question how to blur them efficiently. One
approach would be the accumulation buffer, which is however problematic for the reasons
stated above. Another problem would be visibility of objects drawn into the same layer, but
coming from very different depth positions.

Distribution ray tracing and light field rendering are ruled out by the fact that they are too
tightly bound to the physical model of depth of field. It is certainly possible to modify these
methods such that SDOF is supported, but this would amount to almost entirely redesigning
(or working around) the original methods.

5.2 Fast Methods

In the end, none of the above methods was used, because they were too slow for interac-
tive applications. Two new techniques were designed and implemented that make use of
modern hardware, and thus are much faster than any purely software-based ones.

5.2.1 Polygonal SDOF

When a polygon with only one color is blurred, something peculiar happens: only its edges
change, the interior stays the same. It is therefore possible to create the impression of a
blurred polygon by simply modifying its edges. A very similar thing happens with a line:
It simply gets spread out perpendicular to its direction. The distribution of the values is a
convolution of the blur kernel (which, ideally, is round) with a constant function along the
line (Figure 5.2 on the next page).

The result of the convolution is a structure that is identical for most of the length of the
line, and only differs at its ends (Figure 5.3 on the following page). It is therefore possible
to create a texture that contains one “end” of a line with a given blur diameter that is then
drawn on a rectangle instead of that line – creating the impression of a blurred line. For this

2Thanks to Markus Hadwiger for pointing this out to me.

41



Fast Methods / 5.2

b

Figure 5.2: The convolution of a round blur kernel along a line.

Figure 5.3: The textures used for the polygonal method.

42



Fast Methods / 5.2

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

0.4

0.4

0.4

0.4 0.4 0.40.16

0.16 0.4 0.4 0.4 0.16

0.4

0.4

0.4

0.16

n = 3

b = 3 b = 3.8

n = 5

Figure 5.4: The Box Filter (left), and the generalized box filter for arbitrary sizes (right). It
also shows the difference between the blur level b and the filter kernel size n.

purpose, two rectangles have to be drawn: One that covers one end and the “inner” part of
the line; and a second one that contains the other end. The texture for the first rectangle is
clamped at its edge, so that the constant inner part of the line is repeated along it.

This texture only has to be created once for every blur diameter, because it can be treated
as a luminance/alpha texture that is modulated with the color of the line. This means very
little storage space is needed, and if the blur kernels are precomputed, they can be made as
complex as necessary, regardless of the computational cost.

For polygons, a “half line” is drawn along each edge, that only contains the outer part of
the texture (split along the line). If a texture is mapped onto the polygon, that texture has to
be blurred by another means (e.g., software filtering or FastSDOF).

The polygonal method is used in sav (Section 6.4 on page 50) for displaying blurred time
annotation glyphs, and in the regular sMapViewer (Section 6.6 on page 52).

5.2.2 FastSDOF

Blur can be understood as a convolution operation of the image with a blur kernel3. In
photography, this blur kernel ideally is round, but usually is a regular polygon with six to
eight vertices, due to the shape of the aperture.

The more common (because of its simplicity) type of blur kernel in computer science
is the box filter (Figure 5.4, left). It has the big advantage of being separable [41], which
reduces its computational cost from O(n2) to O(2n), where n is the filter width. It can also
be generalized quite easily to arbitrary sizes (Figure 5.4, right) other than just odd integers.
Even though b can take on any real value, the filter width n is always an odd integer: n =

2
j
b
2

k
+ 1

In terms of bokeh (Section 3.2.3 on page 21), this does not give a very nice image. But
it has turned out to be suitable for our purposes, and we were prepared to sacrifice some
image quality for speed that would enable us to write applications fast enough for interactive
work. Figure 5.5 on page 46 shows an object blurred with this method at different blur levels.
Rendering time was below 1 ms for all levels.

3Such convolution operations are supported only on very high-end graphics hardware, but the goal for fastS-
DOF was a method that would work on standard PC graphics hardware

43



Fast Methods / 5.2

Using graphics hardware is different from a software implementation of a filter in that it
does not sum up the color values of surrounding pixels for every single pixel. Rather, it adds
the whole image to the frame buffer in one step by drawing it onto a textured polygon (this
is done by blending with a special blend function). When the image is drawn in different
positions (with one pixel distance between the images), several image pixels are added to
the same frame buffer pixel. Because of the limited accuracy of the frame buffer (typically
eight bits per color component), this can only be done for small values of n (we have found
n � 4 to yield acceptable images).

For larger blur diameters, we use a two-step approach. First, we sum up four images
into the frame buffer, with their color values scaled so that the sum uses the entire eight
bits. We then transfer this image to texture memory (this is a fast operation) and use this
auxiliary sum as the operand for further calculations. The auxiliary sum already contains the
information from four addition steps, so when summing them up further, only one quarter
of the addition steps is needed. Because all the values in the box filter (except for the border,
which is treated separately) are equal, all auxiliary sums are equal – they are only displaced.
This means, that the auxiliary sum only needs to be computed once (as well as another
auxiliary for the borders). Summing up auxiliary sums is therefore not only more accurate,
it is also faster.

For a box filter of size n, n � 1 additions are usually needed in one direction. When an
auxiliary sum of k values is used as the operand, only k +

�
n
k

�
+ l (with l < k) additions are

needed – this is faster for any n > k + 2, where k is usually a small number (k = 4, in our
case).

Instead of adding one copy of the image, m-fold multi-texturing allows adding m copies
at the same time. For small m (usually 2 or 3 on current low-cost graphics cards), this means
an improvement of almost a factor m.

For blur diameters larger than 20 pixels, we first scale the image to one quarter of its size,
then blur with half the diameter, and then scale it back (“quarter method”). The current im-
plementation is fast enough to suffer no noticeable speed difference for blur levels between
2 and 40. In both scaling operations, bilinear filtering is used, which adds to the blur effect
quite nicely. This makes larger blur diameters faster than smaller ones, because the gain
from only blurring one quarter of the image is larger than the additional scaling steps.

The resulting blurred image is then copied into a texture which is later applied to a bill-
board. When using the “quarter-method”, the second scaling step is done when finally ap-
plying the image to the billboard, so there is very little overhead involved. Because the image
never leaves the graphics card (provided the number of blurred objects is not too large in re-
lation to available memory on the card), this is very efficient. Table 5.2 gives some numbers
on the actual performance of the applications that exist so far.
Using the described method, it is possible to run applications – like the ones presented in
Chapter 6 on page 47 – at interactive frame rates (at leat 5 frames per second) on cheap
consumer graphics hardware. This number is likely to increase with some further optimiza-
tions as well as the use of multi-texturing (which is supported by more and more consumer
graphics cards).

5.2.3 Comparison

Even though FastSDOF appears to be the more useful of the fast methods, the polygonal
method also has its merits. When texture memory is scarce, or when a lot of polygonal,

44



Fast Methods / 5.2

Program Size (Pixels) Percentage Blurred Framerate Figure
LesSDOF 500x400 12% 167 Figure 6.1 on page 48
LesSDOF 500x400 92% 143 Figure 6.2 on page 48
sfsv 380x480 25.5% 31 Figure 6.3 on page 49
sscatter 600x600 37.2% 23 Figure 6.4 on page 51
sscatter 600x600 46.5% 19 Figure 6.5 on page 51

Table 5.2: Performance figures for the applications shown in this paper.

un-textured objects are to be drawn, the polygonal method is clearly superior. It also allows
for more sophisticated blur kernels (e.g., a perfectly round one) and can thus create a nicer
bokeh in the images. The polygonal method is also useful when implementing SDOF in a
system where only a scene graph can be generated, but there is no access to the underlying
mechanisms, so no textures can be copied, etc.

For most other applications, however, FastSDOF is clearly superior. When textured or
very complex objects are drawn, it does not create such a high load on the geometry parts
of the graphics card, but rather relies on raw texturing power. Texture mapping is very
important in computer games, and is therefore likely to gain even more speed with new
hardware. FastSDOF also makes it possible to use small increments in blur (below one pixel),
which is not possible with the polygonal method – at least without full-screen anti-aliasing,
which is very costly.

45



Fast Methods / 5.2

b = 1 b = 5 b = 9

b = 13 b = 17 b = 21

Figure 5.5: A gallery of blurred objects with different blur levels.

46



Chapter 6

Applications

This chapter presents several applications that use SDOF to solve real problems. The de-
scriptions are structured into the problem, application overview, and SDOF aspects.

6.1 LesSDOF: Text Display and Keyword Search

Displaying text and being able to search for keywords is a very common application. It is not
only used in word processors, but also in web browsers, help systems, etc. Most applications
only show the found keyword (e.g. using color), but leave it to the user to understand the
context. It would be helpful to be shown the whole sentence in order to more quickly make
use of the search result.

6.1.1 The Application

LesSDOF [28] displays a text file and allows the user to scroll through it, much like the Unix
program less (which is a pun on the older and less powerful program more). When scrolling
a whole page, a few lines are displayed on both pages as context. Theses lines are slightly
blurred so that user understands that this is context information (Figure 6.1 on the next
page). When searching for a keyword, the found words are displayed with their fore- and
background colors exchanged, and therefore clearly stand out. The sentence in which they
appear is displayed sharply, while the rest of the page is blurred. It is possible to jump
between hits, and so move the focused sentence, or to show all context sentences in focus
(Figure 6.2 on the following page). Other hits for the keyword, which are visible on the page
but not the current focus, are visible despite the blur – the inverse display of the keyword is
easy to see.

6.1.2 SDOF Aspects

This application only uses a binary relevance classification. A text string is either a keyword
or it is not, a line of text is either new or overlapping from the last page. Blur and other
cues (like inverse display of the keywords) are used to reinforce each other in the case of the
current keyword, and as orthogonal dimensions for other keywords. This example does not
use any color, and is still very effective in guiding the viewer’s attention.

47



LesSDOF: Text Display and Keyword Search / 6.1

Figure 6.1: Scrolling in LesSDOF: The top three lines are context from the last page, and
therefore blurred – but still readable.

Figure 6.2: Finding a keyword in LesSDOF: There are three hits on this page, with the focus
currently on the middle one. The sentence around the keyword is clearly visible, while the
rest of the context is blurred.

48



sfsv: SDOF-Enhanced File System Viewer / 6.2

Figure 6.3: A file system viewer with all files in focus (top left) and one focusing on the files
of one user (bottom right).

6.1.3 Interaction

In LesSDOF, the user cannot directly influence either the relevance or the blur function.
When paging through a text, the “overlapping” lines are displayed using the minimum per-
ceivable blur; when showing the results of a search, the irrelevant parts are displayed using
the maximum acceptable blur.

6.2 sfsv: SDOF-Enhanced File System Viewer

File system viewers like the Windows explorer are among the most used applications on
today’s personal computers. Some aspects of them are quite effective (like the tree view),
while others are quite poor. One of the poorer aspects is the ability to quickly look for
different information in a directory or directory structure without losing the context. Sorting
the data according to a data dimension clearly is not a solution to this problem.

6.2.1 The Application

The sfsv application (SDOF-enhanced file system viewer) shows a directory structure in a
slight variation of the well-known treeview (Figure 6.3). It is possible to do different queries
on this data and show the results using different visual cues. One of these cues is blur. So
if the user selects the file sizes to be shown blurred (Figure 6.3), the larger files are shown in
focus, while the smaller ones are out of focus.

49



Sscatter: SDOF-Enhanced Scatterplot / 6.3

6.2.2 SDOF Aspects

Here, SDOF can be used both as an orthogonal cue and a reinforcement, depending on the
user’s needs. The combination of cues makes it possible to find files in their context, e.g., the
ones that eat up all the hard disk space.

6.3 Sscatter: SDOF-Enhanced Scatterplot

Scatter plots are a very useful tool to get an overview over data and to test hypotheses. But
scatter plots are only really useful for two data dimensions, others must be mapped to visual
attributes of the displayed objects. A large number of easily distinguishable cues is therefore
needed.

6.3.1 The Application

Sscatter can read data files in different formats whose structure (column delimiters, sizes,
names, how many lines per data point, etc.) can be specified in a configuration file. It
displays the data in a scatter plot, where the user can select which data dimensions are
mapped to which visual features. When used on data of car models from 1993, one can see
that more expensive cars have lower fuel efficiency, and that American and other cars are
available over the whole price range (Figure 6.4 on the next page). It is also possible to find
out that the availability of manual transmission is generally a feature of more expensive cars
(Figure 6.5 on the following page).

6.3.2 SDOF Aspects

Because the user is free to choose data dimensions, a combination of binary (e.g., availability
of manual transmission), discrete (e.g., number of cylinders) or continuous (e.g., price, en-
gine size, etc.) relevance measure. What exactly is needed depends on what the user wants
his or her new car to be or do.

6.4 SDOF-Enhanced AsbruView: sav

In a visualization of clinical therapy plans called AsbruView [26], there are several different
knowledge roles. For each of these roles, information items can be defined together with
a rather complex time annotation. These bits of information should be visible in a way
that makes it possible to understand their relations with each other – both in time and with
respect to criteria like which definitions use the same parameters, etc.

What makes comparisons especially difficult in this case is the fact that the plans them-
selves are structured (tree-like and possibly quite large), and the number of dimensions is
high (there are five knowledge roles).

6.4.1 The Application

sav (SDOF-enhanced AsbruView) is a display of time annotation glyphs that are displayed
in layers that are stacked in the direction orthogonal to the viewer. The user can select which
layer he or she wants to see as the first (sharp) layer by selecting the “tab” of that layer. All

50



SDOF-Enhanced AsbruView: sav / 6.4

Figure 6.4: A scatterplot of car data showing that more expensive cars have a lower miles
per gallon (MPG) number, and that American and other cars are available over the full price
and MPG range.

Figure 6.5: A scatterplot of car data showing that more expensive cars have larger engines,
and that the availability of manual transmission is generally a feature of more expensive
cars.

51



Chess Boards: sPGNViewer / 6.5

actions within a layer (folding of plans, scrolling) are, of course, synchronized between all
the layers.

The user can also choose to select objects not based on the layer they are in, but by con-
ditions such as the occurrence of a parameter or variable in expressions.

6.4.2 SDOF Aspects

This application demonstrates the use of layers in a more abstract view than the mapviewer
(Section 6.6). It only uses a binary relevance function, but provides several different ways to
apply them to layers and to objects within layers.

6.5 Chess Boards: sPGNViewer

Pointing out information in a display without hiding context and without changing that
context too much can be quite challenging. At the same time, chess players, for example,
“see” certain configurations and relations between chessmen. It would be interesting to
mimic this, and thus be able to show the user information (in a tutoring system, for example).

6.5.1 The Application

sPGNViewer [27] reads descriptions of chess games in the Portable Game Notation (PGN),
which is a simple text format using the algebraic notation used in chess. It is then possible to
select the move after which the position of the chessmen on the board is displayed. Individ-
ual figures can be marked as relevant or irrelevant, and the program can show the user all
chessmen that threaten or cover a certain figure, for example (Figure 6.6 on the next page).

The board can be displayed in 2D and 3D, and the 3D display can be turned and tilted.

6.5.2 Interaction

The user can select which move to show the board after, and also change between 2D and
3D display. It is also possible to select single fields on the board and change their relevance
manually. Pointing to a figure makes it possible to select the relevance to be mapped to
chessmen threatening or covering that figure.

6.5.3 SDOF Aspects

The most useful relevance function for this program is a binary one. But it is also possible to
show those chessman that would be threatened if the figure of current interest was removed.
In this program, the “auto focus” feature (Section 4.5.3) is also implemented.

6.6 sMapViewer: Layered Maps

When displaying a large number of information layers in a geographical visualization, the
user has to decide whether to be distracted by too much information, or to have less – and
possibly too little – information visible at the same time.

52



sMapViewer: Layered Maps / 6.6

a)

c)

b)

d)

Figure 6.6: sPGNViewer: a) and b) showing the chessmen in focus that threaten the knight
on e3; c) and d) focusing on the chessmen that cover the knight on e3.

53



sMapViewer: Layered Maps / 6.6

a) b)

Figure 6.7: sMapViewer: The left part shows railroads in focus, while the right one focuses
on rivers.

6.6.1 The Application

sMapViewer allows the user to select which layers to focus on by changing their blur level.
This way, the user is provided with context information while not being distracted by it.

There are two version of this program that differ in their display style and the ways the
user interacts with them. In the “regular” version (Figure 6.7), the map is read from a vector
file and the relevance of each layer can be directly and independently controlled.

In the user study version (Figure 7.10 on page 67), there are three different display modes
and also different interactions (which are described below). The display modes are semi-
transparent, SDOF, and opaque mode, which are described in more detail in Section 7.3.10.

6.6.2 Interaction.

In the “regular” version, the user can directly change the relevance for each layer, and thus
has complete control over every detail. It is also possible to zoom and pan the image. It is
not possible, however, to change the order of the layers.

In the user study version, the user can only select a layer to be put “on top” of the stack
of layers. In the opaque version, it is also possible to switch individual layers on and off.

6.6.3 SDOF Aspects

The regular version of this program contains the possibility of defining a continuous rele-
vance function. The user study version uses a discrete function in SDOF mode.

54



Chapter 7

Evaluation

Visualization methods need evaluation. We therefore performed a user study to test some of
the hypotheses we had about the nature of SDOF (such as its preattentiveness).

The study was prepared in cooperation with the Center for Usability Research and En-
gineering (CURE) and was performed in the CURE Usability Labs in August 2001. It was
financed by the VRVis Research Center and the Institute of Software Technology (IFS), Vi-
enna University of Technology.

This section describes the hypotheses we tested (Section 7.1), the test design (Section 7.3)
and the results we got (Section 7.4). These results are discussed and conclusions are drawn
in Section 7.5.

7.1 Hypotheses

The following hypotheses were tested in the study. Each of them is shortly presented and
described here. The details of how they were tested are given in Sections 7.3.4 to 7.3.11.

Sharp objects can be detected and located preattentively among blurred ones. This hypo-
thesis is the core of the whole study. It states that it is possible to detect the presence
of a sharp object and to locate it (at least the quadrant it is in), even if the image is
only shown for 200 ms. This is important in practice, if SDOF is to be used as a tool for
guiding the viewer. This hypothesis was tested in block 1.

The percentage of sharp objects among blurred ones can be estimated preattentively. Be-
ing able to estimate the ratio of the number of objects with and without a certain feature
is another preattentive task. The block that tests this hypothesis is block 2.

Sharp objects can be found faster than rotated ones. This is a comparison of search speed
with orientation, another preattentive feature – tested in block 3.

The combination of blur with other features does not impact search time. Combinations of
features generally make search tasks slower, but we wanted to know if this was also
the case for SDOF. This hypothesis was also tested in block 3.

Blur is perceived in a way that makes it useful as a full visualization dimension. Can blur
act as a full addition to color, etc? And if, how is it perceived (linear, logarithmic, etc.)?
This was tested in block 4.

55



Sample / 7.2

SDOF makes finding keywords easier. The efficiency of the LesSDOF application was tested
with this hypothesis in block 5.

SDOF makes it possible to judge scatter-plots faster. Scatter-plots and similar applications
are quite common applications, so we wanted to know the usefulness of SDOF in such
a setting – tested in block 6.

SDOF makes reading layered maps faster. The layer metaphor is at the core of the SDOF
idea, and its most natural application are maps. We therefore wanted to know if it can
be understood and worked with effectively. This last hypothesis was tested in block 7.

7.2 Sample

To rule out large differences in perception between test participants, and to allow for a rather
small sample size due to financial and time constraints, we selected a rather narrow group
of participants who all fulfilled the following requirements:

� male
� aged 18–25
� very good vision (no contact lenses or glasses)
� students at university
� basic computer knowledge

The sample size was 16 individuals, which we recruited from different universities in
Vienna. Each participant was paid a small amount of money for taking part.

7.3 Test Design

This section describes the hardware and software environment of the test, as well as the
design of the individual blocks.

7.3.1 Hardware Setup

We used a Dual Celeron 433MHz PC with 128MB RAM and an nVidia Geforce2 GTS graphics
card. The screen was a Philips 150B TFT LCD screen with a resolution of 1024x768 pixels
which was able to display 16.8 million colors. The screen was run at 75Hz – this is important
for the maximum error in the preattentiveness trials.

For the first two blocks of the test, it was necessary to display images for 200 ms. The
screen refresh was synchronized with the vertical refresh. At 75 Hz, a screen refresh takes
13 ms, which is the maximum delay between drawing and displaying the image; and also
between clearing the screen and the display of the empty screen. This introduces a maximum
error of 6.5%, which is not significant for these trials.

7.3.2 Software

All software used in this trial was developed specifically for it. The programs were written
in C++ using OpenGL and wxWindows, and ran on GNU/Linux 2.4.7 using XFree86 4.0.2.

56



Test Design / 7.3

Block Number Description
Block 1 Preattentive Detection & Location
Block 2 Preattentive Count Estimation
Block 3 Disjunctive and Conjunctive Search
Block 4 Relation of Blur Levels
Block 5 Application: LesSDOF
Block 6 Application: sScatter
Block 7 Application: sMapViewer
Block Q Qualitative Questions

Table 7.1: An overview of the structure of the user study.

For blocks 1 (target detection and location), 2 (count estimation), 3 (feature interplay),
and 6 (Sscatter), a program was used during the test that only displayed images and an
answer screen. This program pre-loaded the next image while waiting for the answer by the
participant. This ensured predictable display times that were independent of image loading
and decoding (the image was already in memory when it was needed).

The images for blocks 4 (relations), 5 (LesSDOF), and 7 (sMapViewer) were drawn di-
rectly during the trial.

All programs produced log files, which were simple tab-delimited ASCII text files. Each
program first wrote a line containing the number of the participant, the block number and a
complete time stamp to the file. After a blank line, a line with column headings was written.
All lines after that contained the actual log information from the test. Each of these lines
contained at least the number of the participant, a line number, the block number and a time
offset in milliseconds from the start of logging.

7.3.3 Test Layout

The test consisted of eight blocks (seven quantitative blocks and one qualitative one), as
described in table 7.1. The order of blocks and the order of images or questions inside of
every block were changed for every participant to cancel out learning effects (except for the
questions in block Q, which were always asked last).

In the first three blocks, we used images created by a program to test for preattentiveness.
The objects shown in these images were put in an 8x8 grid, and were displaced randomly
with an equal distribution of angles, and a Gaußian distribution of the distance to the center
of each field. All images were 512x512 pixels in size. For the objects, we chose ellipses,
because they have the advantage of keeping their shape even when blurred quite strongly
(in contrast to rectangles, which become ellipses ...), and they can be rotated which makes
comparison between color, blur and orientation in the later blocks easier.

The images were manually checked for overlapping ellipses and ellipses too close to the
borders between quadrants.

7.3.4 Block 1: Preattentive Detection and Location

The first block was designed to test the first hypothesis (see Section 7.1): Sharp objects can
be detected and located preattentively among blurred ones.

57



Test Design / 7.3

Image
200ms

Answer "Weiter" Empty

300ms

Figure 7.1: Structure of Block 1

For this purpose, we showed the participants images similar to Figure 7.2 on the follow-
ing page for 200 ms. All objects in the images of this block were black and had their principal
axis parallel to the x axis (i.e., horizontal). Half of the images in this block contained exactly
one sharp target, the other half did not. There were 3, 32, or 63 distractors, i.e., blurred el-
lipses (64 in the case where no target was present vs. 63 plus one target). Images were created
with each combination of three different blur levels (blur diameters of 7, 11 and 15 pixels).
For each combination of parameters, 30 images were created, resulting in 1260 images (30
images, 2 target cases (present or not), 3 numbers of distractors (3, 32, 63), 7 selections of 3
blur levels).

For every participant, five images were chosen per parameter combination (resulting in
210 images per participant), and put into a random sequence.

Before the start of the main part of the test, participants were shown a sample image from
the data set and then had 10 trial images. During the test, the participants were first shown
the test image for 200 ms, and then an answer screen which consisted of frames for all four
quadrants that they could click as well as two buttons, one for “no target” and for “target
not locatable”. The buttons as well as the quadrant frames reacted by being drawn with a
lighter background when the mouse was moved over them.

After the participant had clicked on one of the quadrants or one button for his answer,
an empty screen with the word “Weiter” (“next”) was shown. To get to the next image, the
participants then had to press the space bar. This was done to give the subjects control over
when the next image would appear, and also to enable them to take short breaks when they
would get tired. After the key-press, a blank screen was shown for 300 ms, and then the next
image appeared (Figure 7.1).

After every 30 images, the participant was shown a screen telling him to take a short
break. But because participants were able to take breaks at any time anyway, these were
seldomly taken.

7.3.5 Block 2: Preattentive Count Estimation

Another aspect of preattentive processing is the ability to estimate the ratio of target objects
in an image, described in the second hypothesis: The percentage of sharp objects among
blurred ones can be estimated preattentively.

To test this, we showed the participants images in which there was an object in every
position of the grid, with different numbers of targets and different blur levels. In each
image, there were between 5% and 95% targets (in 10% steps, which translated to 3, 9, 16,

58



Test Design / 7.3

Figure 7.2: Example image for block 1 (32 distractors, 1 target present)

Image
200ms

Answer "Weiter" Empty

300ms

few
intermediate
many

Figure 7.3: Structure of Block 2

59



Test Design / 7.3

Figure 7.4: Example image from block 2 (count estimation) with nine targets and 55 distrac-
tors.

60



Test Design / 7.3

22, 28, 35, 41, 48, 54 targets), and all distractors were of the same blur level per image. Five
images were created for every combination of parameters, and for 3, 9, and 54 targets, also
an “ungrouped” version was created (see below). This resulted in 180 images, five images
were selected from every parameter combination and put into a random order for every
participant.

The sequence of screens for this block (Figure 7.3 on page 59) is similar to block 1. But
instead of click-able quadrants, the participants were given three buttons to choose whether
there were “few”, “intermediate”, or “many” targets (where “few” were from 1 to 19 objects,
“intermediate” from 20 to 45, and “many” from 45 to 64 objects – these numbers did not
coincide with the numbers in images so that every image was clearly in one class (and not
on the border between two)).

We also wanted to differentiate between images where objects formed groups and images
with ungrouped objects, but it turned out to be impossible to have completely ungrouped
objects in an image where more than a quarter of the objects are either targets or distractors
(we wanted to at least have ungrouped distractors for images where “ungrouping” targets
was not possible. But even this was not possible).

7.3.6 Block 3: Interplay

In the third block, we wanted to test how well the combination of blur and color as well as
blur and orientation compared to each of the cues on its own, and how problematic ignoring
each of them would be.

This block consisted of two parts: one for disjunctive search, and one for conjunctive search.
Disjunctive search means looking for an object with one specific feature, ignoring the

others, even though they are different in the targets and the distractors. For example to
find the sharp object independently of its color (which could be black or red), with blurred
distractors 50% of which were black, and 50% red. There was also a control test for the same
task with all distractors black and a black target, as well as one with all distractors red and a
red target.

The second task was to look for the red object, independently of its blur level, among
black distractors that could be blurred and sharp (again 50% blurred, 50% sharp). Again,
there was a control test with all objects sharp, and one with all objects blurred.

For disjunctive search, 540 images were created (30 for each combination of parameters),
and 90 were selected for every participant (5 from every parameter combination).

Conjunctive search means looking for a combination of features to find the target. Ta-
ble 7.2 on the next page gives the combinations of features to look for, and which distractors
were present in the images (Figure 7.5 on the following page gives an example).

The screen sequence for this block is similar to the previous two (Figure 7.6 on the next
page). But instead of a fixed time that the images were displayed, the participants could look
at them as long as they needed to find the answer to the question – they were of course told
to answer as quickly as possible.

7.3.7 Block 4: Relations of Blur Levels

The goal of this block was to find out how blur levels are perceived and if blur could be used
as a separate, fully-fletched visualization dimension.

61



Test Design / 7.3

Sub-part Target Distractors
a black and sharp red sharp, red blurred, black blurred
b red and sharp black sharp, red blurred, black blurred
c black and rotated red rotated, red horizontal, black horizontal
d black and horizontal red rotated, red horizontal, black rotated
e horizontal and sharp rotated sharp, rotated blurred, horizontal blurred
f rotated and sharp horizontal sharp, rotated blurred, horizontal blurred

Table 7.2: The tasks and distractors for conjunctive search in block 3.

Figure 7.5: Sample image from block 3: Find the rotated sharp object.

Image Answer "Weiter" Empty

300ms

Figure 7.6: Structure of Block 3

62



Test Design / 7.3

Select Select
RightLeft

Different

Equal

Figure 7.7: Block 4 (relations of blur levels)

This block consisted of five parts. The task in parts a to c was to judge the difference in
blur between two objects. For this purpose, two ellipses were shown close to each other. The
participant would compare the blur levels and then click on one of the buttons “equal” or
“different”. Depending on the part, the objects were then changed (and also sometimes left
the same in the “equal” case to make errors from expectations less likely): in part a, the right
blur level was increased if the user clicked “equal”, and a new starting point (equal for both
objects) was selected in the case of “unequal”. In part b, the blur level of the right object was
decreased in the case of “unequal”, and the objects started at a high blur level. In part c, a
random level and a random direction was chosen, and the user had the choice between “left
object sharper”, “equal”, “right object sharper”. Depending on his answer, the object was
changed (similar to parts a and b, depending on the direction).

Part d was designed to find the absolute threshold for blur perception. For this block,
only one object was shown, first starting from with a sharp one, and then starting with a
clearly blurred one (both cycles were repeated three times). The user had the choice of two
buttons, “sharp” and “blurred”. When starting with the sharp object, the blur level was
increased (or left equal) when the answer “sharp” was given, until the participant answered
“blurred”.

In parts a to d, an empty screen was shown for 300 ms before the next image was dis-
played, to make changes less obvious to the user, and to make the exercise less tiring when
no change happened for several screens (so the user would not believe the mouse click to
have had no effect).

In part e, two objects were shown to the participants that were blurred at different levels.
The participant had to give a numerical estimation of the blur factor of these two objects.
These numbers were given orally, and noted by the test supervisor.

7.3.8 Block 5: LesSDOF

LesSDOF (Section 6.1) is an application that can show texts and search for keywords in them.
There are three modes in LesSDOF for this study: a) only the keyword is displayed with

inverted colors (e.g., white text on black background); b) keyword is inverted, primary con-
text (sentence) is displayed sharply, everything else (second-level context) is blurred (Fig-
ure 6.2 on page 48); c) keyword is inverted, context is drawn on a gray background, the rest
of the page is displayed sharply (Figure 7.8 on the next page).

It was possible to step from one hit to the next by pressing the arrow down key, or to go
back to the previous hit by pressing the arrow up key. At the beginning and end of the text,
the navigation would simply wrap around, and this would be visible because of the position

63



Test Design / 7.3

Figure 7.8: LesSDOF in grey mode.

of the scroll bar.
The participants got twelve different texts with different tasks (specific to each text) that

they should solve by entering a keyword (which was predefined as part of the task) and then
going from hit to hit, trying to find the answer in the context of the keyword. As soon as
they knew the answer, they would press the space bar, which would cause the search time
to get logged. The answer was then given orally.

7.3.9 Block 6: Sscatter

The subjects were shown images from the Sscatter application. They were asked to point
to certain objects which were defined by the values they stood for. The data set contained
census data and election results from the 50 states of the USA from the 2000 presidential
elections. In all images, the color encoding showed the average income in that state (blue
for high income, green for low), and the election results were encoded to show states with
a majority for George W. Bush in focus or rotated, and the others blurred or not rotated
(Figure 7.9 on the following page).

The tasks for each image were given to the participants orally and in written form. In the
first part, they consisted of clicking on object fulfilling two or three criteria (position along
one of the axes, sharpness/orientation, and, in some images, also color). The participants
had to click on the object they thought was the correct one.

In the second part, participants had to click on the center of gravity of a set of objects –
defined by color, blur, or orientation.

In both parts, the location of the correct object or point (center of gravity), the location of
the mouse click, and its euclidian distance from the correct point were logged.

64



Test Design / 7.3

Figure 7.9: An example image from block 6. The image contains census data and election
results from the 2000 presidential elections in the USA. The axes encode total area (x axis)
and miles city (y axis), blue objects stand for richer states, and sharp objects represent states
with a majority for Bush.

65



Results / 7.4

7.3.10 Block 7: sMapViewer

Similar to block 5, there were three different modes in sMapViewer for this study: semi-
transparent, SDOF, and opaque mode. The map was a hand-drawn imaginary map with nine
layers of information (rivers, railroads, highways, cities, raw materials, vantage points, low
real estate costs, nature reserves, and industrial areas).

In semi-transparent mode (Figure 7.10a), all layers were drawn semi-transparently (with
50% transparency). Their depth order could be changed by clicking on the name of one layer,
which was then brought to the top.

In SDOF mode (Figure 7.10b), the top-most layer was displayed sharp, while all oth-
ers were more and more blurred (with exponentially increasing blur). Similar to semi-
transparent mode, the user could click on one layer’s name to bring it to the top.

In opaque mode (Figure 7.10c), the layers were drawn on top of each other without trans-
parency. The user could not only change their depth order, but also hide layers completely
by clicking a little check-box next to their names. When a layer was brought to the top of the
stack, it was also automatically made visible.

The program logged the mode and the order of layers (and which layers were visible)
after every interaction.

7.3.11 Block Q: Qualitative Questions

This block was always the last one, and consisted of oral questions to the participant. The
following questions were asked (English translations given here):

� What is your overall impression of the use of sharpness/blur in user interfaces?

� Have you noticed anything special about your visual perception during or after the
test?

� Which pros and cons do you see for the use of blur in applications?

� Are there any applications which this way of visualizing information seems especially
suited for?

� Are there any other remarks you would like to make?

In addition to these questions, the participants were also asked several times during the
test (mostly between blocks) if they had any remarks or if they noticed anything special.

7.4 Results

In this section the results are presented for every block, and then discussed in Section 7.5 on
page 77.

Due to some technical problems and one participant misunderstanding a task, we were
not able to use data from all 16 participants. We had the data of the full set of 16 participants
for blocks 1, 3, 4, and 5. For block 2, we only had data from 14 subjects; for block 6, we had
data from 12 subjects; and for block 7, there were 13 usable data sets.

66



Results / 7.4

c)

a) 

b)

Figure 7.10: The MapViewer used in the user study. a) semi-transparent mode, b) blur mode,
c) opaque mode.

67



Results / 7.4

Combination of Blur Levels

b111b110b101b100b011b010b001

E
xi

st
en

ce
 d

et
ec

te
d 

co
rr

ec
tly

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

.74.74
.70.72

.94.93
.97

Combination of Blur Levels

b111b110b101b100b011b010b001

P
os

iti
on

 d
et

ec
te

d 
co

rr
ec

tly

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

.65.66

.61
.64

.94
.91

.97

Number of Objects

64323

P
os

iti
on

 d
et

ec
te

d 
co

rr
ec

tly
1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

.70
.73

.88

Number of Objects

64323

E
xi

st
en

ce
 d

et
ec

te
d 

co
rr

ec
tly

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

.77
.80

.89

Combination of Blur Levels

b111b110b101b100b011b010b001

P
os

iti
on

 d
et

ec
te

d 
co

rr
ec

tly

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0.0

Target

existent

nonexistent

Combination of Blur Levels

b111b110b101b100b011b010b001

P
os

iti
on

 d
et

ec
te

d 
co

rr
ec

tly

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

Number of Objects

3

32

64

a) Target detection by distractor blur levels b) Target location by distractor blur levels

c) Target detection by number of objects d) Target location by number of objects

f) Target location by blur and number e) Target location by blur and existence

Figure 7.11: An overview of the results of block 1 (target detection and location). The per-
centage of correct answers is given for different combinations of parameters. Encoding of
distractor blur levels: After the b, three digits represent the three blur levels. If the digit is 1,
that blur level was present; if it is 0, it was not.

68



Results / 7.4

7.4.1 Block 1: Preattentive Detection and Location

The subjects were able to detect targets and also to point to the correct quadrant with a very
high probability. Figure 7.11a shows these probabilities in dependence of the blur levels used
in the images. The names of the bars are encoded as follows: the three digits after the b stand
for the three blur levels, the first one for the smallest blur, the second one for the intermediate
blur level, and the third one for the strongest blur used. If the number is 1, objects with the
corresponding blur level were present in the image, if it is 0, that blur level was not used.

It is quite obvious that the smallest blur level strongly influences the accuracy for target
detection and location – the difference between the first three and the remaining four cases
in Figures 7.11a and b is significant.

There is a slight difference in being able to detect the sharp object and being able to locate
it. The reason for this could be that objects near the quadrant border were detected but then
associated with the wrong quadrant. Another explanation is that for those images where the
smallest blur level was present, cases where blurred objects were mistaken for sharp ones
would add to the accuracy in cases where the target was present, but not less in cases with
no target.

There is also a significant difference between the accuracy in the cases with three objects
and those with 32 or 64 (Figure 7.11c and d). But the values are still very good even for many
objects (77% for detection with 63 distractors, 70% for location).

There are no significant differences in accuracy when comparing images where a target
was present with images where there was no target (Figure 7.11e) – except in the b100 case,
where the accuracy was much lower when a target was present. This is most likely due to the
fact that participants were not able to distinguish between the (slightly) blurred distractors
and the target.

If one compares the accuracy depending on the number of objects and the blur levels
(Figure 7.11f), an interesting difference between the images with the first blur level present
and those without can be seen: For a small number of objects (3 in our case), the accuracy
does not diminish as fast as with more objects. But for images with many objects, the smallest
blur level makes them useless (accuracies close to 50%, which is not better than chance).

7.4.2 Block 2: Preattentive Count Estimation

When comparing the accuracy for images by number of targets (Figure 7.12a), the accuracy
is higher for numbers farther away from category borders. This was to be expected, since
participants make more mistakes near these borders. To substantiate this claim, a chi-square
test was performed to compare the answers to random ones. For all three blur levels, a
significant difference from chance was found (b001: �2 = 782, b010: �2 = 706, b100: �2 =

439, all for p < 0:001). With absolute numbers of around 95% for the peaks in each category,
the result is very good.

Looking at the blur level (Figure 7.12b), there is a significant difference between the accu-
racy when using the smallest blur level and the other two levels. The reason for this is most
likely that objects with a very low blur are perceived as sharp, and therefore the estimate is
too high. This was to be expected, given the results of the first block. But even the lowest
accuracy of 74% is quite good, the other values are close to 90%, which is very good.

The above results can be analyzed further by splitting them up in two dimensions: By
category and by blur level (Figure 7.12c). Higher blur levels show significantly better accu-

69



Results / 7.4

Number of Targets

5448413528221693

E
st

im
at

io
n 

co
rr

ec
t

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

.93

.78

.53

.66

.89
.92

.43

.87

.96

Blur Level

b100b010b001

E
st

im
at

io
n 

co
rr

ec
t

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

.74

.85
.88

Category

manymediumfew

E
st

im
at

io
n 

co
rr

ec
t

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

Blur Level

b001

b010

b100

.89

.67
.70

.91

.76

.88 .87
.82

.93

a) b)

c) d)

Figure 7.12: An overview of the results of block 2 (count estimation). a) average ratio of
correct answers for count estimation by number of targets actually present in the image; b)
average ratio of correct answers for count estimation by distractor blur levels; and c) correct
answers for target detection by number of objects and distractor blur levels.

70



Results / 7.4

Conjunctive Search Task

blur + orientationcolor + orientationcolor + blur

T
im

e 
(m

s)

3000

2000

1000

0

Target

existent

nonexistent

2442

2803

1138 1160

1442

689

Search Task

con:color+orientation

con:orientation+blur

con:color+blur

dis:target sharp

dis:target red

simple:blur

simple:color

T
im

e 
(m

s)

1600

1400

1200

1000

800

600

400

200

0

1442

1160

689691

588
651

552

a) b)

Figure 7.13: An overview of the results of block 3 (interplay). a) time needed for search
by search task (“simple”: only look for one feature, with no other feature present; “dis”:
disjunctive search for one feature with two distractor features present; “con”: conjunctive
search for combination of features; b) search times for conjunctive search by search task and
existence of target.

racies, and the fact that the lowest blur level has its highest accuracy with the most objects
(other than the other two, which have high accuracies at both “ends”) substantiates the claim
made above that objects with a small blur level are perceived as sharp.

7.4.3 Block 3: Interplay

This block may be the most interesting one in this study. It compares blur to color (Fig-
ure 7.13a), one of the most widely used and strong visual cues. And it shows that there is no
significant difference between a simple search for color or for sharp objects! The conjunctive
searches (for color and blur, color and orientation, as well as blur and orientation) also differ
significantly from each other. But the conjunctive search for color and blur does not signifi-
cantly differ from the simple searches for color or sharpness. This is surprising, because the
combination of features usually means longer search times [59].

The differences between color and blur are not significant, which is also a very interesting
result.

As Figure 7.13b shows, the search times were longer when no target was present. This is
not surprising, because this trend can be found in most other tasks and is also supported by
theory [13]. It simply takes the subjects longer to make sure there is no target and that they
haven’t missed it.

The error rate was very small in this block: for the combination of color and blur, there
was only one error; for blur and orientation, there were five errors; and for color and orien-
tation, there were four errors – these are the number over all images shown to participants
in this block, which were 90 per participant, and 1440 total (this means an error rate of less
than 0.7%). The difference between the three tasks are not significant, and this low rate was
to be expected since subjects had as much time as they needed for every image. But it shows
that they took the study seriously, and really tried to answer correctly – and that they did

71



Results / 7.4

Blur Level Value
1 1
5 1.49
9 2.19
11 2.6
13 3.52

Table 7.3: Comparison of real and perceived blur values.

not sacrifice accuracy for speed.

7.4.4 Block 4: Relations and Blur Levels

When looking at the simplest task of this block, judging whether the blur levels of two objects
that are side by side are identical, subjects more often mistook different blur levels for the
same one (Figure 7.14a). When splitting this result up by the blur level of the left object
(which was never very different from the right one, see below), it becomes clear that people
are not able to identify blur levels as equal for larger values (Figure 7.14b) – there is a rather
clear downward trend in the (green) “yes” answers for the identical cases. This is much less
pronounced than for different blur levels, which are quite well discriminable.

As Figure 7.14c shows, there is virtually no difference between the different modes that
were used to measure the relative threshold. All three modes yielded the same results for
both cases.

The results for the distance needed to discriminate between blur levels fit quite well with
the image painted with the above results (Figure 7.14d). There is no clear trend in the needed
distance, the values seem to be quite random – they are all between 1 and 1:8, though, and
their average is quite small (about 1:3).

The absolute thresholds needed to discriminate between sharp and blurred (and not dif-
ferent levels of blur) are more precisely measurable (Figure 7.14e). Participants perceived
an object to be sharp when its blur diameter was around 3.27 when starting with a clearly
blurred object and decreasing its blur level; and started seeing objects as blurred at an aver-
age b of 1.46 when starting with the sharp object. The last part of this block was to find out
the ratio between real and perceived blur. Table 7.3 and Figure 7.14f show quite clearly, that
the perception of blur is very weak, and is quite different between subjects. The participants
only gave a perceived ratio of 3.52 (on average) for a real ratio of 1:13, which is practically
useless for a continuous blur.

7.4.5 Block 5: LesSDOF

The results of LesSDOF and the other application blocks were quite disappointing – not
because they showed that SDOF was a bad method, but because they were not very clear.
Even though most of these results are not significant, they shall still be presented here.

While the search times were shorter for color and SDOF highlighting (Figure 7.15a), they
were not significantly better than without any context information. Participants made hardly
any mistakes (most of which could be traced to misunderstanding the question), so there was
also no difference in the accuracy of the answers.

72



Results / 7.4

Blur  Level

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

A
ns

w
er

 C
or

re
ct

1.0

.8

.6

.4

.2

0.0

Difference:

No

Yes

Objects are ...

differentidentic

A
ns

w
er

 C
or

re
ct

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

.44

.77

Mode

mixedblurred>sharpsharp>blurred

A
ns

w
er

 C
or

re
ct

1.00

.90

.80

.70

.60

.50

.40

.30

.20

.10

0.00

Difference:

No

Yes

.39

.45.45

.78.77.78

Blur Level

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

D
is

ta
nc

e
1.8

1.6

1.4

1.2

1.0

.8

Direction

sharp>blurredblurred>sharp

B
lu

r 
Le

ve
l

3.50

3.00

2.50

2.00

1.50

1.00

.50

0.00

1.46

3.27

1515151515N =

Blur Level 

13,0011,009,005,001,00

95
%

 C
I S

ub
je

ct
iv

e 
P

er
ce

pt
io

n

10

8

6

4

2

0

a) b)

c) d)

e) f)

1

1

linear

Figure 7.14: An overview of the results of block 4 (Relations and Blur Levels). a) Correct an-
swers for identical and different objects; b) Correct answers for identical (“no”) and different
(“yes”) objects, by blur level used for the less blurred object; c) Correct answers depending
on direction of blur; d) Distance needed to detect difference, by blur level of less blurred
object; e) Absolute blur level needed to detect sharp or blurred object, when only one object
was present; f) Numerical answer to perception of absolute blur value, by displayed blur
value.

73



Results / 7.4

METHOD

without highligtingcontext by colorcontext by blur

S
ea

rc
h 

T
im

e

15000

14000

13000

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

14027

1118711346

without highlightingcontext by colorcontext by blur

R
an

ki
ng

3.00

2.50

2.00

1.50

1.00

.50

0.00

2.88

1.561.56

a) b)

Figure 7.15: Results of block 5 (LesSDOF). a) shows the mean search times for the different
methods; b) shows the ranking of the three methods by the users (lower values mean more
useful method).

When ranking the three methods, however, blur and color were equal (at 1:56, Fig-
ure 7.15b), while no context was ranked significantly worse (�2 = 18:3, df = 2, p < 0:001).

7.4.6 Block 6: Sscatter

Unfortunately, there were some errors in the software that made the results of this block
almost unusable. In the images, the encoding for orientation was wrong, and so the tasks
(finding the sharp/rotated target with a certain set of features) were very different in their
difficulty.

With all due caution, the results are shown in Figure 7.16a. They show no significant
difference (and, in fact, hardly any difference at all) between blur and orientation.

For the second part – finding the center of gravity – these problems were not quite as
severe, and therefore an analysis was possible. It showed that when using blur, the partic-
ipants’ guess for the center of gravity was a significantly smaller distance away from the
correct answer than with color (F (1; 10) = 50:78, p < 0:001; Figure 7.16b). There was no
significant influence of time to answer on the correctness of the result.

7.4.7 Block 7: sMapViewer

The last quantitative block yielded even fewer interesting results. The response times (Fig-
ure 7.17a) were not significantly different. In semi-transparent mode, there were fewer clicks,
because participants could see all the layers at once. This is also reflected in the number
of interactions (Figure 7.17b), and there is a significant correlation between the number of
clicks and the response time (p < 0:001). This means that participants mostly clicked on
layers, and did not spend different amounts of time thinking about the answer between the
different methods.

The lower number of interactions in semi-transparent mode lead to some forejudgments
(Figure 7.17c). This is not a statistically significant finding, however.

74



Results / 7.4

3dim2dim

1.0

.9

.8

.7

METHOD

blur

orientation
1111 1111N =

TASK

colored objectsall objects

95
%

 C
I D

is
ta

nc
e

60

50

40

30

20

10

0

METHOD

blur

orientation

a) b)
M

ea
n 

co
rr

ec
t a

ns
w

er
s

Figure 7.16: Results of block 6 (Sscatter). a) shows the mean rate of correct answers for blur
and orientation encoding for two and three relevant criteria; b) shows the distance from
the real center of gravity dependent on the method (blur or orientation) and on whether all
objects or only those of one color were considered.

Blur was judged better than the other two modes by participants (Figure 7.17d), but this
also is not significant.

7.4.8 Block Q: Qualitative Questions

Most participants liked the idea of blur to stress certain parts of the display, but only as an
additional tool that they could deactivate.

The difference between context display using blur or color in block 5 was considered a
good idea, but some participants said they preferred the use of color because the relevant
context can also lie outside of the immediate context sentence.

The high marks for SDOF in block 6 (LesSDOF) were justified by the fact that ellipses
with different orientation were hard to see when partly obscured.

Participants generally found the opaque mode of block 7 (sMapViewer) the most useful.
Some said they would have wanted a combination of that mode with blur.

The opacity of layers in both opaque and SDOF mode was criticized by several of partic-
ipants, because it required a lot of interaction to get the right layers into the right order. One
person also said he would have wanted a “back” button to undo actions.

As for additional applications, participants suggested design tools, where less important
parts could be “hidden”. Another idea was the use in computer games. A route planner
was also given as an example of application, where the proposed route would be displayed
sharply, while the surroundings were blurred.

Several participants said that they had seen a strong difference in size between blurred
and sharp objects. Some participants reported seeing an after-image of the sharp objects,
which made answering the question easier. Participants also mentioned a white border
around sharp objects.

75



Results / 7.4

Method

OpaqueBlurredSemi-Transparent

M
ea

n 
R

es
po

ns
e 

T
im

e

60000

50000

40000

30000

20000

10000

0

54924

50387

40803

Method

OpaqueBlurredSemi-Transparent

M
ea

n 
R

an
ki

ng

2,60

2,40

2,20

2,00

1,80

1,60

1,40

1,20

1,00

,80

,60

,40

,20

0,00

2,38

1,62

2,00

Method

OpaqueBlurredSemi-Transparent

M
ea

n 
R

at
e 

of
 C

or
re

ct
 A

ns
w

er
s

1,00

,90

,80

,70

,60

,50

,40

,30

,20

,10

0,00

,83

,92

,69

131313N =

Method

OpaqueBlurredSemi-Transparent

95
%

 C
I S

um
 o

f s
el

ec
te

d 
la

ye
rs

12,00

10,00

8,00

6,00

4,00

2,00

0,00

a) b)

d)c)

Figure 7.17: Results of block 7 (sMapViewer). a) shows the mean time from the start of the
task to giving the answer; b) shows the number of selected layers before giving an answer; c)
gives the accuracy for each method; d) shows the ranking of the methods by users (smaller
numbers mean higher ranking).

76



Discussion and Conclusions / 7.5

7.5 Discussion and Conclusions

Blocks 1 and 2 clearly show what we were expecting: sharpness vs. blur is a preattentive
feature. We did not compare blur to other features in these two blocks, and it is hard to
compare this result to other studies which were done with different images, objects, numbers
of targets/distractors, sample, etc. But the accuracy is very high (at least for larger blur
levels), which gives us confidence in the method.

The results of block 3 are also very positive. The fact that SDOF was not significantly
slower than color was a surprisingly good result, and shows the great strength of this method.
It is astonishing that such a strong method has only been developed and thoroughly tested
at this point in time – after information visualization and certainly perceptive psychology
have existed for a long time.

Participants found block 4 particularly straining and annoying, because they had to con-
centrate on blurred objects and judge them, which is very unnatural. This is, of course, quite
contrary to the way SDOF and blur would be used in practice, so this bad judgment is not
a real problem for SDOF. But it shows that SDOF must be used with care, and it must be
possible to turn it off quickly when the user wants to see context objects clearly.

Participants did not like the idea of a blurred text display so that they could not read it
anymore. This means that in an application, text should never be blurred to such an extent
as to be unreadable.

The white border around sharp objects is easy to explain [13]: The human eye is very
sensitive to strong contrasts, and so saw the black-on-white contrast even stronger than it
was.

The results from block 4 clearly show that SDOF cannot be used as a separate and fully-
fledged visualization dimension. This is due to the fact that discrimination between blur
levels is very poor, and participants were not able to judge the relations between blur levels
in any useful way – they hardly saw any difference at all. This does not mean, however, that
not a small number (three or four) blur levels could be distinguished in an application. This
is subject to more research, though.

The application test blocks yielded very poor results, which is not only due to the pro-
gramming errors. There were also design errors, especially in block 7 (sMapViewer). It
appears much easier to design a “pure” psychological test like the first few blocks than a
real application test. The number of clicks was a particularly bad choice for the performance
measure in block 7.

Just to be sure, a further preattentiveness-test should be conducted that displays white
noise after the image. This rules out the possibility of real after-images, and thus makes the
test result stronger.

Further tests would also be needed to check how other populations react to the same
stimuli.

77



Chapter 8

Summary and Future Plans

Focus+Context is an important area in information visualization and also related fields. A
number of methods exist that provide more space on the screen or more data dimensions.
But there are many applications where it is useful to point out information and to do that in
the context of the other data so that the user knows what to make of that data.

These methods can be put into three categories, distortion-oriented or spatial methods,
dimensional ones, and cue methods. Spatial methods provide more space on the screen by
assigning larger portions to more important objects, and less to the rest. Thus, relevant
objects appear larger, and their features can be read more clearly.

Dimensional methods display different data dimensions within a focus area (“lens”).
This makes it possible to display less or different information for the remaining objects, and
thus not clutter the display too much.

Both these methods are user-driven, i.e., they require the user to point at objects and then
show more or different information. They also imply that the user’s idea of relevance is
tightly coupled with the physical layout of the display. But this is not necessarily the case,
especially when the user wants to query the data for information that is not immediately
visible.

Cue methods point out information in the context of other objects, but without really
adding a display dimension. When the route from A to B should be pointed out on a map,
for example, this could be done by drawing that route with a higher color saturation than
the rest of the display. These methods are data-driven, they highlight objects or parts of
the display based solely on their properties, but not on their layout. This makes very fine-
grained control possible of what should be stressed.

Semantic Depth of Field (SDOF) is a new cue method. It was inspired by the depth-of-
field effect that has been known for many years in photography. We extended the means
of photography by assigning blur not based on distance, but on relevance of objects or data
points. Relevance is computed by the application based on a query by the user. A blur level
is then calculated from the relevance value, and is used to blur objects on the display. The
user can select which relevance function to use, and how to translate from relevance to blur.
This gives the user a lot of flexibility in exploring and eventually understanding data.

A model is presented that makes it possible to use existing methods from photo-realistic
rendering to create images with blur not based on depth, but on relevance. More efficient
techniques are also presented, which can blur objects very quickly using state-of-the-art con-
sumer graphics hardware. These methods allow for interactive applications to use SDOF.

78



One of these applications is a text viewer which allows the user to search for a word. If
the word is found, it is displayed in reverse video, and the sentence it appears in is displayed
sharply, while the remaining page is blurred. Thus, it is possible to quickly understand the
immeadiate context the word appears in, and at the same time see what other occurences
there are, without being distracted.

Another application is a chess board, which makes it possible to display chess games and
to point out constellations of chessmen. This makes it possible to see which figure threaten
a particular one, or which chessmen cover that figure.

Similar to its use in photography, SDOF can be used to move the focus through layers,
such as the information layers in a map. The sMapViewer displays maps and allows the user
to focus on one or more layers at the same time, or to stack them on top of each other, so that
only the top-most layer is in focus, and the ones below are more and more blurred – thus
creating a strong impression of depth and also of relevance.

When analyzing data, scatter-plots are a very important tool. One of our applications is
a scatter-plot where blur can be used to distinguish between classes of objects, to get a better
understanding of the data.

Using SDOF is possible and effective, as our study has shown. More than that, it has
shown that SDOF is a preattentive feature, and can thus be perceived in a very short time
without serial search. This is a very interesting feature for a visual cue, because it maxi-
mizes the bandwidth to the human brain. SDOF is not significantly slower than color in its
perception, which is a very surprising and impressive result. Different to other features, its
combination with orientation does not make search times significantly longer, as is the case
with all other features.

Summing up, we have put a new tool into the toolbox of visualization application de-
signers that rivals color – something that has not happened for quite some time.

Even though this thesis has shown that SDOF is a useful and effective method, it has
shown the need for quite a lot of future work in this area.

One interesting question certainly is which parts of blur (reduced contrast and lower
spatial frequencies) are responsible for its effectiveness. It is also possible that only their
combination works sufficiently well.

The time dimension also needs to be explored further. We have to find out how long
a transition between blur levels has to take, and how its absence affects perceptual perfor-
mance. A “natural” interval for auto focus (at least for the default) also needs to be found.

SDOF is not limited to information visualization. We want to explore the use of SDOF in
Volume and Flow Visualization for integrating F+C there. But also in information visualiza-
tion, it will be interesting to see how much it can work together and aid other F+C methods,
like distortion oriented ones or different kinds of trees.

But SDOF is not even limited to visualization: We also want to explore its possibilites in
Virtual Reality. It could be useful for navigation or tutoring in VR.

Still another application area are user interfaces. Guiding the user could be useful not
only in help or tutoring systems, but also when a lot of information must be available at the
same time, but not too distracting.

The interplay of SDOF an depth cues for 3D visualization also needs to be explored fur-
ther to find out how well SDOF works for this kind of application.

79



Chapter 9

Conclusions

The most fascinating part of this work certainly was the user study. It not only meant an
elaborate and meaningful evaluation of the underlying idea and a few applications, but also
brought us into contact with people from HCI and perceptual psychology, which was a very
interesting and rewarding experience.

And the results of this study are also notable: We were surprised that the difference
between color and blur was not significant, and that it worked so well (not significantly
worse) in conjunction with color. This shows that neglecting blur as a visual cue so far has
meant a loss to the science.

Similar to color, SDOF is perceived very strongly as judging or weighting, and therefore
is very intuitive if pointing out relevance or importance. What is also similar to color is the
fact that SDOF cannot be used for displaying a full data dimension, because users cannot
accurately estimate the represented value from blur.

One difference between color and blur is that people are used to changing the color of
objects by painting them, etc. But few people are used to changing the blur of objects di-
rectly by the means a lens provides, and nobody has yet had direct control over the blur of
single objects. This is probably part of the reason why people are having difficulties judging
and distinguishing blur levels. An intuitive way of changing SDOF parameters is also very
important and at the same time very hard to find.

What is also surprising is that this visual cue – which has been known for about 150 years
(since photography became used in practice) – has not been recognized by the (information)
visualization community, even though it is visible in many images and practically every
movie. The conclusion from this fact should be that more interdisciplinary work is needed
not only with researchers from perceptual psychology, but also with artists, who deal with
perception in their daily work.

80



Bibliography

[1] Ansel Adams. The Camera. Little Brown & Company, 1991.

[2] Keith Andrews, Josef Wolte, and Michael Pichler. Information pyramids: A new ap-
proach to visualising large hierarchies. In IEEE Symposium on Information Visualization,
Late Breaking Hot Topics, 1997.

[3] Matt Belge, Ishanta Lokuge, and David Rivers. Back to the future: A graphical layering
system inspired by transparent paper. In INTERCHI ’93 Conference Companion, pages
129–130, 1993.

[4] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. Tool-
glass and magic lenses: The see-through interface. In Proceedings SIGGRAPH ’93, pages
73–80, 1993.

[5] Alan F. Blackwell, Anthony R. Jansen, and Kim Marriott. Restricted focus viewer: A
tool for tracking visual attention. In Proceedings of the First International Conference on
the Theory and Application of Diagrams (Diagrams 2000), Lecture Notes in Artificial Intelli-
gence (LNAI), pages 162–177, Edinburgh, Scotland, UK, September 1–3 2000. Springer.

[6] M. Sheelagh T. Carpendale, David J. Cowperthwaite, and F. David Fracchia. Extending
distortion viewing from 2D to 3D. IEEE Computer Graphics and Applications, 17(4):42–51,
July/August 1997.

[7] Grace Colby and Laura Scholl. Transparency and blur as selective cues for complex vi-
sual information. In SPIE Vol. 1460, Image Handling and Reproduction Systems Integration,
pages 114–125, 1991.

[8] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing. Computer
Graphics (Proceedings SIGGRAPH ’84), 18(3):137–145, July 1984.

[9] Giuseppe di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Algorithms
for drawing graphs: An annotated bibliography. Computational Geometry: Theory and
Applications, 4(5):235–282, 1994.

[10] Paul Fearing. Importance ordering for real-time depth of field. In Proceedings of the
Third International Computer Science Conference: Image Analysis Applications and Computer
Graphics (ICSC ’95), volume 1024 of Lecture Notes in Computer Science, pages 372–379,
Hong Kong, December 11–13 1995. Springer.

81



BIBLIOGRAPHY

[11] George W. Furnas. Generalized fisheye views. In Proceedings of the ACM Conference on
Human Factors in Computer Systems, SIGCHI Bulletin, pages 16–23, New York, USA.,
1986. Association for Computer Machinery.

[12] George W. Furnas and Benjamin B. Bederson. Space-scale diagrams: Understanding
multiscale interfaces. In Proceedings of ACM CHI ’95 Conference on Human Factors in
Computing Systems, volume 1 of Papers: Navigating and Scaling in 2D Space, pages 234–
241, 1995.

[13] E. Bruce Goldstein. Sensation and Perception. Brooks/Cole Publishing Company, 5th

edition, June 1998.

[14] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The
lumigraph. Computer Graphics (Proceedings SIGGRAPH ’96), 30(Annual Conference
Series):43–54, 1996.

[15] Paul Haeberli and Kurt Akeley. The accumulation buffer: Hardware support for high-
quality rendering. Computer Graphics (Proceedings SIGGRAPH ’90), 24(4):309–318, Au-
gust 1990.

[16] Helwig Hauser, Lukas Mroz, Gian-Italo Bischi, and M. Eduard Gröller. Two-level vol-
ume rendering. IEEE Transactions on Visualization and Computer Graphics, 7(3):242–252,
2001.

[17] Christopher G. Healey, Kellogg S. Booth, and James T. Enns. Harnessing preattentive
processes for multivariate data visualization. In Proceedings Graphics Interface ’93, pages
107–117, May 1993.

[18] Christopher G. Healey, Kellogg S. Booth, and James T. Enns. Visualizing real-time mul-
tivariate data using preattentive processing. ACM Transactions on Modeling and Computer
Simulation, 5(3):190–221, July 1995.

[19] Christopher G. Healey and James T. Enns. Large datasets at a glance: Combining tex-
tures and colors in scientific visualization. IEEE Transactions on Visualization and Com-
puter Graphics, 5(2):145–167, April 1999.

[20] Wolfgang Heidrich, Philipp Slusalek, and Hans-Peter Seidel. An image-based model
for realistic lens systems in interactive computer graphics. In Wayne A. Davis, Marilyn
Mantei, and R. Victor Klassen, editors, Graphics Interface ’97, pages 68–75. Canadian
Information Processing Society, Canadian Human-Computer Communications Society,
May 1997.

[21] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visualization and nav-
igation in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, January-March 2000.

[22] Jian Huang, Klaus Mueller, Naeem Shareef, and Roger Crawfis. Fastsplats: Optimized
splatting on rectilinear grids. In Proceedings Visualization 2000, Salt Lake City, UT, USA,
October 8–13 2000. IEEE.

[23] Oliver Jennrich. Ein Blick auf die Schärfentiefe, 1999. Available from
http://www.astro.gla.ac.uk/users/oliver/articles/Schaerfentiefe.pdf (in German).

82



BIBLIOGRAPHY

[24] T. Alan Keahey. The generalized detail-in-context problem. In Proceedings IEEE Sympo-
sium on Information Visualization 1998, pages 44–51. IEEE, 1998.

[25] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model for com-
puter graphics. Computer Graphics (Proceedings SIGGRAPH ’95), 29(Annual Conference
Series):317–324, November 1995.

[26] Robert Kosara and Silvia Miksch. Metaphors of movement: a visualization and user
interface for time-oriented, skeletal plans. Artificial Intelligence in Medicine, 22(2):111–
131, May 2001.

[27] Robert Kosara, Silvia Miksch, and Helwig Hauser. Semantic depth of field. In IEEE Sym-
posium on Information Visualization 2001 (InfoVis 2001), San Diego, CA, USA, October22–
23 2001.

[28] Robert Kosara, Silvia Miksch, and Helwig Hauser. Focus and context taken literally.
Computer Graphics & Applications, Special Issue on Information Visualization, 2002.

[29] Matthias Kreuseler, Norma López, and Heidrun Schumann. A scalable framework for
information visualization. In IEEE Symposium on Information Visualization 2000, Salt
Lake City, UT, USA, October 8–13, 2000. IEEE.

[30] John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on
hyperbolic geometry for visualizing large hierarchies. In Proceedings CHI ’95. ACM,
1995.

[31] Hsien-Che Lee. Review of image-blur models in a photographic system using princi-
ples of optics. Optical Engineering, 29(5):405–421, May 1990.

[32] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented presen-
tation techniques. ACM Transactions on Computer-Human Interaction, 1(2):126–160, June
1994.

[33] Marc Levoy and Pat Hanrahan. Light field rendering. Computer Graphics (Proceedings
SIGGRAPH ’96), 30(Annual Conference Series):31–42, 1996.

[34] Henry Lieberman. Powers of ten thousand: Navigating in large information spaces. In
Proceedings of the ACM Symposium on User Interface Software and Technology ’94, Visual-
ization I, pages 15–16, 1994. TechNote.

[35] Henry Lieberman. A multi-scale, multi-layer, translucent virtual space. In IEEE Inter-
national Conference on Information Visualization ’97, London, September 1997. IEEE.

[36] Helwig Löffelmann. Extended cameras for ray tracing. Master’s thesis, Institute of
Computer Graphics, Vienna University of Technology, 1995.

[37] Helwig Löffelmann and Eduard Gröller. Ray tracing with extended cameras. Journal of
Visualization and Computer Animation, 7(4):211–228, 1996.

[38] Ishantha Lokuge and Suguru Ishizaki. Geospace: An interactive visualization system
for exploring complex information spaces. In CHI ’95 Proceedings, 1995.

83



BIBLIOGRAPHY

[39] Jock D. Mackinlay, George G. Robertson, and Stuart K. Card. The perspective wall:
Detail and context smoothly integrated. In Proceedings of ACM CHI ’91 Conference on
Human Factors in Computing Systems, Information Visualization, pages 173–179, 1991.

[40] Krešimir Matković, Laszlo Neumann, and Werner Purgathofer. A survey of tone map-
ping techniques. In Proceedings of the Thirteenth Spring Conference on Computer Graphics,
pages 163–170, Budimerce, Slovakia, 1997. Comenius University.

[41] Tom McReynolds and David Blythe. Advanced graphics programming techniques us-
ing OpenGL. SIGGRAPH 2000 Course 32, Course Notes, 2000.

[42] Harold M. Merklinger. A technical view of bokeh. Photo Techniques, May/June 1997.
Available from http://fox.nstn.ca/˜hmmerk/ATVB.pdf (25-Sep-2001).

[43] Harold M. Merklinger. Scheimpflug’s patent. Photo Techniques, Novem-
ber/December 1996. Available from http://fox.nstn.ca/˜hmmerk/SHSPAT.pdf (25-
Sep-2001).

[44] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183–210, June 1995.

[45] Tamara Munzner. Drawing large graphs with H3Viewer and Site Manager. In Proceed-
ings of Graph Drawing ’98, number 1547 in Lecture Notes in Computer Science, pages
384–393. Springer Verlag, August 1998.

[46] Thomas Porter and Tom Duff. Compositing digital images. Computer Graphics,
18(3):253–259, July 1984.

[47] Michael Potmesil and Indranil Chakravarty. A lens and aperture camera model for
synthetic image generation. Computer Graphics (Proceedings SIGGRAPH ’81), 15(3):297–
305, August 1981.

[48] Paul Rademacher and Gary Bishop. Multiple-center-of-projection images. In Proceed-
ings SIGGRAPH ’98, pages 199–206, 1998.

[49] George G. Robertson and Jock D. Mackinlay. The document lens. In Proceedings of the
ACM Symposium on User Interface Software and Technology ’93, Visualizing Information,
pages 101–108, 1993.

[50] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone trees: Animated 3D
visualizations of hierarchical information. In Proceedings of ACM CHI ’91 Conference on
Human Factors in Computing Systems, Information Visualization, pages 189–194, 1991.

[51] Jaroslaw R. Rossignac. Considerations on the interactive rendering of four-dimensional
volumes. In Volume Visualization Workshop ’89, pages 67–76, University of North Car-
olina, Chapel Hill, NC, May 18–19 1989.

[52] Manojit Sarkar and Marc H. Brown. Graphical fisheye views of graphs. In Proceedings
of ACM CHI ’92 Conference on Human Factors in Computing Systems, Visualizing Objects,
Graphs, and Video, pages 83–91, 1992.

84



BIBLIOGRAPHY

[53] Manojit Sarkar and Marc H. Brown. Graphical fisheye views. Communications of the
ACM, 37(12):73–83, December 1994.

[54] Manojit Sarkar, Scott S. Snibbe, Oren J. Tversky, and Steven P. Reiss. Stretching the
rubber sheet: A metaphor for visualizing large layouts on small screens. In Proceedings
of the ACM Symposium on User Interface Software and Technology, Visualizing Information,
pages 81–91, 1993.

[55] Cary Scofield. 21
2
-d depth-of-field simulation for computer animation. In D. Kirk, edi-

tor, Graphics Gems III, pages 36–38. Academic Press, Inc., 1992.

[56] Mikio Shinya. Post-filtering for depth of field simulation with ray distribution buffer.
In Proceedings of Graphics Interface ’94, pages 59–66, Banff, Alberta, Canada, May 1994.
Canadian Information Processing Society.

[57] Ben Shneiderman. Tree visualization with tree-maps: A 2-D space-filling approach.
ACM Transactions on Graphics, 11(1):92–99, January 1992.

[58] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. The movable filter as a user interface
tool. In Proceedings of ACM CHI ’94 Conference on Human Factors in Computing Systems,
volume 1 of Information Visualization, pages 306–312, 1994.

[59] Anne Treisman. Preattentive processing in vision. Computer Vision, Graphics, and Image
Processing, 31:156–177, 1985.

[60] Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publish-
ers, 2000.

[61] Lee Westover. Interactive volume rendering. In Volume Visualization Workshop ’89, pages
9–16, University of North Carolina, Chapel Hill, NC, 18–19 May 1989.

[62] Lee Westover. Footprint evaluation for volume rendering. Computer Graphics (Proceed-
ings SIGGRAPH ’90), 24(4):367–376, August 1990.

[63] Steven E. Wixson. Four-dimensional processing tools for cardiovascular data. IEEE
Computer Graphics and Applications, 3(5):53–59, August 1983.

[64] Steven E. Wixson. The display of 3d MRI data with non-linear focal depth cues. In
Computers in Cardiology, pages 379–380. IEEE, September 1990.

85



Acronyms, Abbreviations, Variables

Acronyms and Abbreviations

BL Blur Level

CC Camera Coordinates

CoC Circle of Confusion

DD Data Domain

DOF Depth of Field

F+C Focus+Context

IS Image Space

RI Relevance Interval

SDOF Semantic Depth of Field

VS Visualization Space

Variables

b blur level (CoC diameter)

bmax maximum blur level

h step height (standard blur function, Figure 4.3 on page 26)

r relevance

t blur threshold (standard blur function)

86



Acknowledgements

I would like to thank the following people:

Silvia Miksch for letting me go ahead with this project even though it was not exactly a
core part of our research . . . and also for her support throughout my master’s and
Ph.D. work – and for supplying me with chocolate when I was down.

Helwig Hauser for making long lists of things to do and trying to make me meet deadlines.
And also for letting me steal some useful LATEX stuff from his thesis . . .

Johann Schrammel and Peter Fröhlich of CURE for their enthusiasm and willingness to
work with the early, buggy versions of my user study software. And also for mak-
ing it possible to design, implement, and evaluate a user study in such a tight time
frame.

Meister Eduard Gröller for being so enthusiastic about this work, and for being the only
person in the world to drink banana liquor.

Markus Hadwiger for his help with OpenGL problems, and for helping me to develop
FastSDOF.

VRVis and the Insitute for Software Technology and Interactive Systems for financing the
user study for the evaluation of SDOF, which was performed by CURE.

Niki Sahling for looking at 2000 pictures and sorting out the bad ones.

Monika Lanzenberger for proof-reading and for some interesting points.

Dr. Heinrich Tauscher for supplying me with the images in figure 3.10 on page 22 – and for
a very interesting discussion.

de.rec.fotografie (the German-speaking photography newsgroup) for teaching me a lot about
photography, especially technical stuff.

This work is part of the Asgaard Project, which is supported by Fonds zur Förderung der
wissenschaftlichen Forschung (Austrian Science Fund), grant P12797-INF. Parts of this work
have been carried out in the scope of the basic research on visualization at the VRVis Re-
search Center (http://www.VRVis.at/vis/) in Vienna, Austria, which is funded by an
Austrian governmental research program called Kplus.

87



Curriculum Vitae

Address Robert Kosara
Radetzkystraße 21/7
A-1030 Vienna, Austria
Email: robert@kosara.net

Born
February 3rd, 1975, in Graz, Austria

Education
October 1999 to December 2001
Ph.D. studies in Computer Science at Vienna University of Technology
Finished in October 2001
Ph.D. Thesis: Semantic Depth of field – Using Blur for Focus+Context Visualization
Supervisors: Silvia Miksch, Helwig Hauser

March 1997 to February 1999
Four semesters of Medicine (unfinished)

October 1994 to July 1999
M.S. studies in Computer Science at Vienna University of Technology
Graduated July 1999 to “Dipl.-Ing.” (M.Sc.) with distinction
Master’s Thesis: Metaphors of Movement – A User Interface for Manipulating

Time-Oriented, Skeletal Plans
Supervisor: Silvia Miksch

Job Experience
Since October 1999
Researcher with the Asgaard Project, headed by Silvia Miksch

Professional Memberships
ACM (Association for Computing Machinery)
IEEE (Institute of Electrical and Electronics Engineers)
ÖGAI (Austrian Society for Artificial Intelligence)

Publications
Please see http://www.kosara.net/publications.html

88


	Abstract
	Contents
	Introduction
	Related Work Visualization
	Focus+Context Techniques
	Classification
	Trees
	Blur in Visualization
	Preattentive Processing

	Related Work Photography
	Camera Models
	Depth of Field

	Semantic Depth of Field
	Spatial Arrangement
	Relevance
	Blur
	Viewing, Camera Models
	Properties, Applicability
	Parameterization
	Usage Types, Metaphors

	Implementation
	DOF Methods
	Fast Methods

	Applications
	LesSDOF
	sfsv
	Sscatter
	sav
	sPGNViewer
	sMapViewer

	Evaluation
	Hypotheses
	Test Design
	Results
	Discussion & Conclusions

	Summary
	Conclusions
	Bibliography
	Acronyms, Abbreviations, Variables
	Acknowledgements
	Curriculum Vitae

